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Privacy in Payment System

Alice Bob

1024

Confidentiality: transfer amount is hidden from an external observer
Anonymity: identities of sender and receiver is hidden from an external observer
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Auditing in Payment System

sender=Alice
receiver=Bob
v = 1024

tx
regulation

f(tx) ?
= 1

π

supervision
sender=Alice, receiver=Bob; v = 1024

Regulation: Auditor can verify if txs comply with policies by inquiring users
auditor does not own extra privilege ; auditing is interactive

Supervision: Auditor can inspect txs of individual user or global users
auditor owns extra privilege ; auditing is non-interactive
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Centralized Payment System

txs are kept on a private ledger only known to the center
the center is in charge of validity check as well as protecting privacy and
conducting audit
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Decentralized Payment System (Blockchain-based Cryptocurrencies)

txs are kept on a global distributed public ledger — the blockchain
to ensure public verifiability, Bitcoin (UTXO model) and Ethereum
(account-based model) simply expose all tx information in public ; no privacy

8 / 68



UTXO vs Account-Based Model

Table: UTXO Model vs. Account-Based Model Comparison

Aspect UTXO Model Account-Based Model
Concept track unspent outputs (like cash) track account balance (like bank)
Privacy new add. per tx enhance privacy add. reuse reduce privacy

Scalability parallel validation sequential state updates
Functionality simple value transfers Turing-complete smart contracts
Complexity manage multiple UTXOs manage a single account

Account-based excels for DeFi/dApps and simpler for users, while it is more challenging
to attain privacy. In this work, we focus on account-based cryptocurrencies.

9 / 68



Motivation

Privacy and Auditability are crucial in any financial system. We want to know:

How to achieve both in the decentralized setting?

anonymity confidentiality

regulation supervision

strong privacy

plausible deniability
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Motivation

In this work, we trade anonymity for regulation:

anonymity confidentiality

regulation supervision

propose Privacy-Preserving Account-Based Cryptocurrency (PPABC) that offers
confidentiality and supports regulation + supervision
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Data Structures of PPABC: 1/2

Blockchain. PPABC operates on top of a publicly accessible and append-only ledger
(blockchain) B.
Public parameters. A trusted party generates public parameters pp at the setup time,
which is used by system’s algorithms.

pp includes an integer vmax that specifies the maximum possible number of coins
in the system. Any balance and transfer must lie in V = [0, vmax].

Account. Each account is associated with a keypair (pk, sk) and an encoded balance
C̃ (which encodes plaintext balance ṽ).

both pk and C̃ are public.
pk serves as account address, which is used to receive transactions from other
accounts.
sk is kept privately, which is used to direct transactions to other accounts and
decodes encoded balance.
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Data Structures of PPABC: 2/2

Confidential transaction. ctx consists of two parts, memo and aux.
memo = (pks, pkr, C) records basic information of a transaction from pks to pkr,
where C is the encoding of transfer amount,
aux denotes the auxiliary information, which is application-dependent.

Policies. Let {ctxi}ni=0 be ctxs related to pk, and vi be the transfer amount of ctxi.
Policies over {vi}ni=1 are satisfied iff f(pk, {ctxi}ni=0) = 1, where f is the associated
predicate.

The basic legality policy flegal(pk, ctx) requires the transfer amount lies in the
correct range and the sender account is solvent

We list more application-dependent regulation policies as below:
limit policy ——

∑n
i vi ≤ amax: flimit(pk, {ctxi}ni=1)

rate policy ——v1/v2 = ρ: frate(pk, (ctx1, ctx2))
open policy ——v = v∗: fopen(pk, ctx)
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Entities of PPABC

In PPABC, there are the following types of entities:

Users: each user may control several accounts.

Validator: checking the validity of proposed transactions.

Regulator: checking if a given set of transactions satisfies regulation policies by
inquiring involved users.

regulator mirrors authorities in the real world, and do not hold any secret

Supervisor: inspecting any transaction without interaction with involved users.
supervisor owns some secret
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Syntax of PPABC: 1/3

Setup(1λ): output public parameter pp and possibly an associated secret parameter sp
A trusted party executes this algorithm once-for-all to setup the whole system. pp
will be used as an implicit input in the rest algorithms.

CreateAccount(ṽ): on input an initial balance ṽ, output a keypair (pk, sk) and an
encoded balance C̃.

A user runs this algorithm to create an account.

RevealBalance(sk, C̃): on input a secret key sk and an encoded balance C̃, output the
balance ṽ in plaintext.

A user runs this algorithm to reveal the balance.
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Syntax of PPABC: 2/3

CreateCTx(sks, pks, pkr, v): on input a keypair (sks, pks) of sender account, a receiver
account address pkr, and a transfer amount v, output a confidential transaction ctx.

A user runs this algorithm to transfer v coins from account pks to account pkr.

VerifyCTx(ctx): on input a ctx, output “0” denotes valid and “1” denotes invalid.
Validators run this algorithm to check the validity of purported ctx. If ctx is valid,
it will be recorded on the blockchain B. Otherwise, it is discarded.

UpdateCTx(ctx): for each fresh ctx appearing on the blockchain B, the corresponding
sender and receiver update their encoded balances to reflect the change

Sender account decreases with v coins while the receiver account increases with v
coins.
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Syntax of PPABC: 3/3

JustifyCTx(pk, sk, {ctx}, f): on input a user’s keypair (pk, sk), a set of ctxs pk
involved and a policy f , output a proof π for f(pk, {ctx}) = 1.

A user runs this algorithm to generate a proof for auditing.

AuditCTx(pk, {ctx}, f, π): on input a user’s public key, a set of ctxs pk involved, a
policy f and a proof π, output “0” denotes accept and “1” denotes reject.

A regulator runs this algorithm to check if f(pk, {ctx}) = 1.

OpenCTx(sp, ctx): on input secret parameter sp, output the transaction amount of
ctx.

A supervisor runs this algorithm to inspect ctxs.
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Desired Feature and Security

Verifiability validity of txs are publicly verifiable

Authenticity only owner can generate tx; nobody else can forge

Confidentiality external observer does not learn the transfer amount

Soundness nobody cannot generate an illegal tx that passes validity check

Regulation user cannot cheat and regulation does not leak more info
other than auditing result

Supervision auditor can see everything, but unable to compromise authenticity
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Security Model of PPABC

Formalizing security model for PPABC turns out to be tricky
strong enough to capture all possible real-world attacks
clean and handy to use
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Formal Security Model (Oracles)

OregH

register honest accounts

OextH corrupt honest accounts

Otrans direct honest accounts to conduct ctx

Oreveal ask honest accounts to reveal ctx

OregC

register corrupted accounts

Oinject inject ctx from corrupted accounts
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Formal Security Model: Authenticity

AdvA(λ) = Pr
[

VerifyCTx(ctx∗) = 1 ∧
pk∗s ∈ Thonest ∧ ctx∗ /∈ Tctx(pk∗s)

:
pp← Setup(1λ);
ctx∗ ← AO(pp);

]
.

ctx∗ is a confidential transaction from target account pk∗s ,
Tctx(pk∗s) denotes the set of all the ctxs originated from pk∗s in Tctx.

Authenticity require unforgeability w.r.t. entire ctx∗ = (memo∗, aux∗) ; rather strong
unauthorized transfers from pks likely diverge from sender’s original intention only
when the adversary (without the knowledge sks) manages to craft a valid ctx with
different memo, because it encodes the core information of a transaction.

Weak authenticity: only requiring unforgeability against memo∗
⇒ allow us to eliminate explicit signature
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Formal Security Model: Confidentiality

AdvA(λ) = Pr

β = β′ :

pp← Setup(1λ);
(state, pk∗s , pk

∗
r , v0, v1)← AO

1 (pp);

β
R←− {0, 1};

ctx∗ ← CreateCTx(sk∗s , pk∗s , pk∗r , vβ);
β′ ← AO

2 (state, ctx∗);

− 1

2
.

To prevent trivial attacks, A is subject to the following restrictions:
1 pk∗s , pk

∗
r chosen by A are required to be honest accounts, and A is not allowed to

make corrupt queries to either pk∗s or pk∗r ;
2 A is not allowed to make reveal query to ctx∗.
3 let vsum (with initial value 0) be the dynamic sum of the transfer amounts in
Otrans queries related to pk∗s after ctx∗, both ṽs − v0 − vsum and ṽs − v1 − vsum
must lie in V.

Restrictions 1 and 2 prevents trivial attack by decryption, restrictions 3 prevent
inferring β by testing whether overdraft happens.
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Formal Security Model: Soundness

AdvA(λ) = Pr
[

VerifyCTx(ctx∗) = 1
∧ memo∗ /∈ Llegal

:
pp← Setup(1λ);
ctx∗ ← AO(pp);

]
.

Here, ctx∗ = (memo∗, aux∗).

authenticity and confidentiality are defined w.r.t. outsider adversaries
(without secret key)
soundness is defined w.r.t. both outsider and insider adversaries (even with
secret key)
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Formal Security Model: Secure Auditing

For regulation compliance, we require:
Correctness: no PPT adversary can fool the regulator to accept a false auditing
result.
Minimal information disclosure: the regulator learns nothing other than the
auditing result.

For supervision, we require:
Consistency: no PPT adversary can generate a transaction such that supervisor’s
view is different from the real receiver’s view.
Safefy: even the supervisor with sp cannot break the authenticity and soundness.
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Choice of Building Blocks

Verifiability

Authenticity

Confidentiality

Soundness

additively HE

Signature

NIZK

eliminate out-of-band transfer

key separation vs. key reuse

ISE

key reuse

Auditing

Supervisionembed backdoor

global escrow
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A Subtle Point: Key reuse vs. Key Separation

We employ PKE and SIG simutaneously to secure auditable DCP.

key separation
(pk1, sk1), (pk2, sk2)

Pros
off-the-shelf & easy to analyze

Cons
double key size
tricky address derivation

key reuse
(pk, sk)

Pros
greatly simplify DCP system
more efficient

Cons
case-tailored design

We choose Integrated Signature and Encryption (ISE): one keypair for both encryption
and sign, while IND-CPA and EUF-CMA hold in the joint sense
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Generic Construction of PPABC: Building blocks

ISE = (Setup,KeyGen, Sign,Verify,Enc,Dec)
PKE component is additively homomorphic over Zp

Fix pp, KeyGen naturally induces an NP relation:

Rkey = {(pk, sk) : ∃r s.t. (pk, sk) = KeyGen(pp; r)}

NIZK = (Setup,CRSGen,Prove,Verify)
adaptive soundness
adaptive ZK
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Algorithms of PPABC: 1/3

Setup(1λ): generate pp for the PPABC system
ppise ← ISE.Setup(1λ), (pka, ska)← ISE.KeyGen(ppise),
ppnizk ← NIZK.Setup(1λ), crs← NIZK.CRSGen(ppnizk)

output pp = (ppise, pka, ppnizk, crs) and sp = ska, set V = [0, vmax]

CreateAccount(ṽ): create an account
(pk, sk)← ISE.KeyGen(ppise), pk serves as account address
C̃ ← ISE.Enc(pk, ṽ; r)

RevealBalance(sk, C̃): reveal the balance of an account
m̃← ISE.Dec(sk, C̃)
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Algorithms of PPABC: 2/3

CreateCTx(sks, pks, v, pkr): transfer v coins from account pks to account pkr.
1 Cs ← ISE.Enc(pks, v; r1), Cr ← ISE.Enc(pkr, v; r2), Ca ← ISE.Enc(pka, v; r3),

memo = (pks, pkr, pka, Cs, Cr, Ca).
2 run NIZK.Prove with witness (sks, r1, r2, v) to generate a proof πlegal for

memo = (pks, pkr, pka, Cs, Cr, Ca) ∈ Llegal 7→ Lequal ∧ Lright ∧ Lsolvent

Lequal = {(pks, pkr, pka, Cs, Cr, Ca) | ∃r1, r2, v s.t.
Cs = ISE.Enc(pks, v; r1) ∧ Cr = ISE.Enc(pkr, v; r2) ∧ Ca = ISE.Enc(pka, v; r3)}

Lright = {(pks, Cs) | ∃r1, v s.t. Cs = ISE.Enc(pks, v; r1) ∧ v ∈ V}
Lsolvent = {(pks, C̃s, Cs) | ∃sk1 s.t. (pks, sks) ∈ Rkey ∧ ISE.Dec(sks, C̃s − Cs) ∈ V}

3 σ ← ISE.Sign(sks, (memo, πlegal))

4 output ctx = (memo, πlegal, σ).
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Algorithms of PPABC: 3/3

VerifyCTx(ctx): check if ctx is legal.
1 parse ctx = (memo, πlegal, σ), memo = (pks, pkr, pka, Cs, Cr, Ca):

1 check if ISE.Verify(pks, (memo, πlegal), σ) = 1;
2 check if NIZK.Verify(crs,memo, πlegal) = 1.

2 ctx is recorded on the ledger if legality test passes or discarded otherwise.
Update(ctx): sender updates his balance C̃s = C̃s − Cs, receiver updates his balance
C̃r = C̃r + Cr.

JustifyCTx(pk, sk, {ctxi}ni=1, f): user pk runs NIZK.Prove with witness sk to generate
a proof πf for f({ctxi}ni=1) = 1.
AuditCTx(pk, {ctxi}ni=1, f, πf ): auditor runs NIZK.Verify to check if πf is legal.
OpenCTx(sp, ctx, sp): supervisor parses ctx = ((pks, Cs, pkr, Cr, pka, Ca), aux), output
ISE.Dec(sp, Ca).
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Regulation

expressiveness of NIZK in use ; supported regulation policies

flimit :
∑n

i=1 vi < ℓ
anti-money laundering

ctx1

ctxi

ctxn

frate : v1/v2 = ρ
pay tax

ctx1 ctx2

fopen : v = v∗

selective opening

ctx
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Supervision
data structure of ctx

pks, Cs, pkr, Cr, pka, Ca πequal πright πsolvent σ

memo info πlegal

signed part

aux info

ska

Naor-Yung
double enc paradigm

STOC 1990

PKE
CPA ; CCA

triple enc paradigm

extend

auditor’s view = recipient’s view

ensure supervision correctness
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Generic Construction of PPABC
Setup(1λ)→ (pp, sp)

ISE.Setup(1λ) → ppise, NIZK.Setup(1λ) → ppnizk
ISE.Gen(ppise) → (pka, ska)

embed backdoor for supervision

CreateAccount(vs)

ISE.Gen(ppise) → (pks, sks)
ISE.Enc(pks, vs) → C̃s

pks, sks, C̃s

CreateAccount(vr)

ISE.Gen(ppise) → (pkr, skr)
ISE.Enc(pkr, vr) → C̃r

pkr, skr, C̃r

CreateCTx(pks, sks, pkr, v)→ ctx

ISE.Enc → memo = (pks, Cs, pkr, Cr, pka, Ca)
NIZK.Prove → πlegal = πequal ◦ πright ◦ πsolvent

ISE.Sign(sks, (memo, πlegal)) → σ

ctx

VerifyCTx(ctx) ?
= 1

C̃s = C̃s − Cs C̃r = C̃r + Cr

AuditCTx(πf , {ctxi}, f)
JustifyCTx(sk, {ctxi}, f)→ πf

OpenCTx(sp, ctx)→ v
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Security Proof

Theorem: Assuming the security of ISE and NIZK, our PPABC framework is secure.

security of ISE’s signature component ⇒ authenticity

security of ISE’s PKE component + adaptive ZK of NIZK ⇒ confidentiality

adaptive soundness of NIZK ⇒ soundness
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Disciplines in Mind

While PPABC framework is intuitive, secure and efficient instantiation requires clever
choice and design of building blocks.

efficient efficient ctx generation/verification
compact ctx size

transparent setup system does not require a trusted setup
design case-tailored NIZK

simple & modular build the system from reusable gadgets
can be reused in other places

40 / 68



Encryption Component of ISE

the initial attempt

ElGamal

gr pkrgm

Bulletproofs

state-of-the-art

oblivious
td

grhmgrhm

Pedersen
commitment

Σ protocol

consistency
proof

Quisquis’s approach [FMMO19]
bring extra bridging cost

Σ-Bullet

integration of Bulletproof
and Sigma protocol

Zether’s approach [BAZB20]
require dissecting Bulletproof, not modular

simple and efficient, but not friendly to the state-of-the-art range proofs
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Encryption Component of ISE: Twisted ElGamal
twisted ElGamal

gr pkrgm

pkr grhm

no td

Bulletproofs

state-of-the-art

grhm

encode message over another generator h
switch key encapsulation and session key
advantages

1 as secure and efficient as standard ElGamal;
2 Bulletproofs-friendly: especially in the aggregated mode
3 also friendly to other range proofs [CCS08, CKLR21] that accept Pedersen

commitment as instance
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Comparison to ElGamal
size efficiency

ElGamal pp pk sk C KeyGen Enc Dec
standard |G| |G| |Zp| |2G| 1Exp 3Exp+2Add 1Exp+1Add+1DLOG
twisted 2|G| |G| |Zp| |2G| 1Exp 3Exp+2Add 1Exp+1Add+1DLOG

Related works [FMMO19, BAZB20] use brute-force algorithm to decrypt, we use
Shanks’s algorithm to accelerate decryption⇒ admits flexible time/space trade-off
and parallelization!

Table: Costs of working with Bulletproofs between standard ElGamal and twisted ElGamal: an
additional Pedersen commitment and a Sigma protocol for consistency.

ElGamal size efficiency
standard 2|G|+ |Zp| 4Exp+1Add
twisted 0 0

the saving could be tremendous when processing millions of data
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Comparison to Paillier

Table: Twisted ElGamal vs. Paillier PKE (32-bit message space and 128-bit security)

timing (ms) Setup KeyGen Enc Dec ReRand Add Sub Scalar
Paillier — 1644.53 32.211 31.367 — 0.0128 — —

t-ElGamal 5.4s+2.2s 0.009 0.094 0.239 0.099 0.003 0.003 0.08

with 64MB lookup table to accelerate decryption 4 ∼ 300× speedup in computation

size (bytes) public parameters public key secret key ciphertext
Paillier — 384 384 768

t-ElGamal 66 33 32 66

10× speedup in communication

44 / 68



Details of Engineering Implementation

Standard Shanks algorithm: #babystep = #giantstep = 2n/2.
Trade space for time: set #babystep = 2n/2+r and #giantstep = 2n/2−r for
better efficiency.

Lookup table is huge due to key is ECPoint
Reduce the size of lookup table by using digest of ECPoint as key (at least 4
times smaller)

Push everything to the extreme
Shanks’s algorithm is highly parallelizable: using multithreading to speed
store the reusable auxliary info to looktable to acceralate decryption
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Signature Component of ISE
We choose Schnorr signature as the signature component.

1 Setup and KeyGen of Schnorr signature are identical to those of twisted ElGamal.
key reuse strategy ✓

2 Sign of Schnorr signature is irrelevant to Decrypt of twisted ElGamal:
Sign(sk,m): pick r

R←− Zp, set A = gr, compute e = H(m,A), z = r + sk · e mod p,
output σ = (A, z).

recall Schnorr signature is provably secure by modeling H as RO: simulating
signature oracle by programing H without using sk ⇒ signatures reveals

zero-knowledge of sk

joint security ✓

We can also use ECDSA/SM2 signature schemes.
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NIZK for Lequal

According to our PPABC framework and twisted ElGamal, Lequal can be written as:

{(pki, Xi, Yi)i∈[3] | ∃r1, r2, r3, v s.t. Xi = pkrii ∧ Yi = grihv for i = 1, 2, 3}.

On statement (pki, Xi, Yi)i∈[3], P and V interact as below:
1 P picks a1, a2, a3, b

R←− Zp, sends Ai = pkaii , B = gaihb to V .
2 V picks e

R←− Zp and sends it to P as the challenge.
3 P computes zi = ai + eri for i ∈ [3] and t = b+ ev using w = (r1, r2, r3, v), then

sends (z1, z2, z3, t) to V . V accepts iff the following four equations hold
simultaneously:

pkzii = AiX
e
i (1)

gziht = BiY
e
1 (2)
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NIZK for Lright
Plug twisted ElGamal into PPABC framework, Lright can be written as:

{(pk,X, Y ) | ∃r, v s.t. X = pkr ∧ Y = grhv ∧ v ∈ V}.

For ease of analysis, we additionally define Lenc and Lrange as below:

Lenc = {(pk,X, Y ) | ∃r, v s.t. X = pkr ∧ Y = grhv}
Lrange = {Y | ∃r, v s.t. Y = grhv ∧ v ∈ V}

It is straightforward to verify that Lright ⊂ Lenc ∧ Lrange.
Σenc: Sigma protocol for Lenc
Λbullet: Bulletproofs for Lrange

Σenc and Λbullet are acturally PoK + DL relation between (g, h) is hard
⇒ Σenc ◦ Λbullet is SHVZK PoK for Lright
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NIZK for Lsolvent
Plug twisted ElGamal into PPABC framework, Lsolvent can be written as:

{(pk, C̃, C) | ∃sk s.t. (pk, sk) ∈ Rkey ∧ ISE.Dec(sk, C̃ − C) ∈ V}.

C̃ = (X̃ = pkr̃, Ỹ = gr̃hm̃) encrypts m̃ of pk under r̃, C = (X = pkr, Y = grhv)
encrypts v under r. Let C ′ = (X ′ = pkr

′
, Y ′ = gr

′
hm

′
) = C̃ − C, Lsolvent can be

rewritten as:

{(pk, C ′) | ∃r′,m′ s.t. C ′ = ISE.Enc(pk,m′; r′ ) ∧m′ ∈ V}.

Prove it as Lright? No! r′ is unknown.
Solution: refresh-then-prove

1 refresh C ′ to C∗ under fresh randomness r∗ ⇐ can be done with sk

2 prove (C ′, C∗) ∈ Lequal ⇐ Sigma protocol Σddh (do not need r′)
3 prove C∗ ∈ Lright
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Bonus: Two Useful Gadgets

twisted ElGamal + Bulletproofs: prove an encrypted message lies in specific range
useful in privacy-preserving applications: confidential transaction and secure
machine learning

prover is the sender of C
knows both r and m

pkr grhm πrange
Bulletproofs

πenc
Sigma protocol

prover is the receiver of C
knows sk and thus m

pk r g r hm

pkr
∗

gr
∗
hm

sk re-rand πddh
Sigma protocol

πrange
Bulletproofs

πenc
Sigma protocol
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NIZK for Auditing Policies: (1/2)

Llimit = {(pk, {Ci}1≤i≤n, amax) | ∃sk s.t.

(pk, sk) ∈ Rkey ∧ vi = ISE.Dec(sk, Ci) ∧
n∑

i=1

vi ≤ amax}

P computes C =
∑n

i=1Ci, proves (pk, C) ∈ Lsolvent using Gadget-2

Lopen = {(pk, C = (X,Y ), v) | ∃sk s.t. X = (Y /hv)sk ∧ pk = gsk}

(pk,X, Y, v) ∈ Lopen is equivalent to (Y /hv, X, g, pk) ∈ Lddh.
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NIZK for Auditing Policies: (2/2)

Lrate = {(pk, C1, C2, ρ) | ∃sk s.t.
(pk, sk) ∈ Rkey ∧ vi = ISE.Dec(sk, Ci) ∧ v1/v2 = ρ}

We assume ρ = α/β, where α, β are positive integer much smaller than p.
Let C1 = (pkr1 , gr1hv1), C2 = (pkr2 , gr2hv2). P computes

C ′
1 = β · C1 = (X ′

1 = pkβr1 , Y ′
1 = gβr1hβv1)

C ′
2 = α · C2 = (X ′

2 = pkαr2 , Y ′
2 = gαr2hαv2)

Note v1/v2 = ρ = α/β iff hβv1 = hαv2 . (pk, C1, C2, ρ) ∈ Lrate is equivalent to
(Y ′

1/Y
′
2 , X

′
1/X

′
2, g, pk) ∈ Lddh.

Thanks to nice algebra structure of twisted ElGamal, PGC supports efficient audit-
ing for any policy that can be expressed as linear constraints over transfer amount
and balance
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Optimizations

pks, Cs, pkr, Cr, pka, Ca πequal ◦ (π1
enc ◦ π1

bullet) ◦ (C∗ ◦ πddh ◦ π2
enc ◦ π2

bullet) σ
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bullet) σ

randomness reuse

Randomness-Reusing
original construction encrypts the same message v under pki (i = {s, r, a} using
independent random coins: (pks, pk

r1
s , gr1hv, pkr, pk

r2
r , gr2hv, pka, pk

r3
a , gr3hv)

twisted ElGamal is IND-CPA secure in 1-message/3-recipient setting
even when reusing randomness ⇒ (pks, pk

r
s , pkr, pk

r
r , pka, pk

r
a, grhv )

Benefit: compact ctx size & simpler design of Σenc
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randomness reuse absorb

aggregate

⧹

More Efficient Assembly of NIZK
πenc can be removed since πequal already proves knowledge of Cs

nice feature of twisted ElGamal ⇒ two Bulletproofs can be generated and verified
in aggregated mode ; reduce the size of range proof part by half

Benefit: further shrink the ctx size
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randomness reuse absorb

aggregate

⧹

eliminate explicit sig

⧹

Eliminate Explicit Signature
Σddh (3-move public-coin ZKPoK of sks) is a sub-protocol of NIZK for Lsolvent
apply the Fiat-Shamir transform by appending the rest part to hash input ; πddh
serves as both a proof of DDH tuple and a sEUF-CMA signature of ctx

(still jointly secure with twisted ElGamal)
Benefit: further shrink the ctx size & speed ctx generation/verification
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Recap of Efficient Instantiation

PPABC

ISE NIZK for Lvalid

twisted
ElGamal PKE

Schnorr
Signature

ZK friendly identical keypair

jointly secure ISE
⇓

Sigma
Protocol

Fiat-Shamircryptographic
hash

transparent
setup

Lequal Lright Lsolvent

Σequal Σenc ◦ Λbullet Σddh ◦ Σenc ◦ Λbullet
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Deploy as a Standalone Cryptocurrency

Table: The computation and communication complexity of PGC

ADCP ctx size transaction cost (ms)
big-O bytes generation verify

transaction (2 log2(ℓ) + 22)|G|+ 11|Zp| 1408 42 15

auditing proof size auditing cost (ms)
big-O bytes generation verify

limit policy (2 log2(ℓ) + 4)|G|+ 5|Zp| 622 21.5 7.5
rate policy 2|G|+ 1|Zp| 98 0.55 0.69
open policy 2|G|+ 1|Zp| 98 0.26 0.42

supervision opening ≤ 1ms

Set vmax = 2ℓ − 1, where ℓ = 32

Choose EC curve secp256r1 (128 bit security), |G| = 33 bytes, |Zp| = 32 bytes.
MacBook Pro [Intel i7-4870HQ CPU (2.5GHz), 16GB of RAM]
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Deploy as a Service
provide auditable confidential transaction service for ETH platform.

SA-DCP service

ETH platform
Solidity

Service Layer
Go

SA-DCP contract verification module

SA-DCP⇔ETH module

SA-DCP user module

SA-DCP SA mudule
account gen

check balance

ctx gen deposit

draw

experimental result on ETH Ganache 2.4.0 ; SA-DCP service is practical
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Comparison to Related Works

Table: Comparison to other acoount-based cryptocurrencies

Scheme transparent
setup scalability confidentiality anonymity regulation supervision

zkLedger ✓+ DL O(n) ? ✓ O(m, |f |) 7

Zether ✓+ DL O(1) ✓ 7 ? 7

PPABC ✓+ DL O(1) ✓ 7 O(|f |) ✓
n is the number of system users, m is the number of all transactions on the ledger

zkLedger [NVV18]: (i) ctx size is linear of n, and n is fixed at the very beginning.
(ii) confidentiality is questionable due to the use of correlated randomness; (iii)
auditing efficiency is linear of both m and |f | due to anonymity.
Zether [BAZB20]: (i) Σ-Bullets require custom design, and its security is hard to
check.
In both zkLedger and Zether: (i) the confidentiality notion is not strong enough;
(ii) signature and encryption are used in an adhoc manner, rather than in an
integrated manner.
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Summary

We propose a framework of PPABC from ISE and NIZK with formal security model
and rigorous proof

provide strong privacy and security guarantees for normal users
provide handlers to conduct regulation and supervision for authority

We instantiate PPABC by carefully designing and combining cryptographic primitives
; PGC

transparent setup, security solely based on the DLOG assumption
modular, simple and efficient

Highlights
twisted ElGamal: efficient, homomorphic and zero-knowledge proof friendly
; a good alternative to ISO standard HE schemes: ElGamal and Paillier
two useful gadgets: widely applicable in privacy-preserving scenarios, e.g. secure
machine learning
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Global and Individual Supervision

Supervision acturally comes with two flavors:
Global supervision: A supervisor can inspect any transaction at his will.

This can be achieved by adpoting global escrow ISE. Naor-Yung paradigm used in
this work happens to give a concrete instantiation.

Individual supervision: A supervisor can inspect transactions associated to a
specific user, which is more fine-grained than global supervision.

This can be achieved by adopting hierarchy ISE.

Yu Chen, Qiang Tang, Yuyu Wang
Hierarchical Integrated Signature and Encryption (or Key Separation vs. Key
Reuse: Enjoy the Best of Both Worlds)
ASIACRYPT 2021
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Ongoing Work
In our onoging work, we trade regulation for anonymity:

anonymity confidentiality

regulation supervision

Prior work [Dia21] provides limited anonymity and does not support multi-receiver.
We construct fully-fledged PPABC that offers anonymity+confidentiality + supervision
and supports multi-receiver based on newly introduced zero-knowledge proofs:

k-out-of-n range proof
inhomogeneous k-out-of-n proof

Min Zhang, Yu Chen, Xiyuan Fu, Zhiying Cui
k-out-of-n Proofs and Application to Privacy-Preserving Cryptocurrencies
ePrint 2025
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Take Away

Crypto is not easy. Let alone using Crypto to build Crypto!
Solid crypto foundation: provable security, all kinds of primitives and tools
Profound computation science background
Excellent programming skills

Exercise
How to prove two twisted ElGamal ciphertexts encrypt the same message?
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Thanks for Your Attention!
Any Questions?
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