
Extension of Two-Party Private Set Operations

Yu Chen
Shandong University

1 / 24

Outline

1 PSO in Unbalanced Setting

2 PSO in Multi-Party Setting

2 / 24

Outline

1 PSO in Unbalanced Setting

2 PSO in Multi-Party Setting

3 / 24

Motivation of Unbalanced Setting

Y X XY

n2 ≈ n1

balanced case
n2 ≫ n1

unbalanced case

PSO (mqRPMT) designed for balanced setting are not efficient in unbalanced setting,
particularly when n2 is huge (communication cost scales linearly in both n1 and n2).

Goal: build mqRPMT whose communication complexity is linear in n1 but
sublinear in n2

mqRPMTserver client
Y = {y1, . . . , yn2} X = {x1, . . . , xn1}

e⃗ ∈ {0, 1}n1 =

{
ei = 1 xi ∈ Y
ei = 0 xi /∈ Y

4 / 24

Prior Work in PSI
The backbone Sigma mqPMT protocol

underlies unbalanced PSI [CLR17, CHLR18, CMdG+21]

P1 (server)
Y = (y1, . . . , yn1)

P2 (client)
X = (x1, . . . , xn2)

a← ⊥
⊥

qi ← FHE.Enc(pk, xi)
q⃗ = {q1, . . . , qn2}

z⃗ = {z1, . . . , zn2}
f(α) =

∏
y∈Y (yj − α)

ri
R←− F, fi(α)← ri·f(α)

zi ← FHE.Eval(pk, fi, qi)

f(x) = 0 ⇐⇒ x ∈ Y

ei := FHE.Dec(dk, zi) ?
= 0

Key idea: use multiplicative masking to hide Y \X, and enable client to test
communication cost: 2n2 FHE ciphertext.
computation cost: n1 multiplication in F + O(n2 logn1) FHE evaluation

5 / 24

Unbalanced mqRPMT from FHE

Directly tweaking Sigma mqPMT to mqRPMT only yields mqRPMT∗

; leak intersection size to the client.

Binbin Tu, Yu Chen, Qi Liu, Cong Zhang
Fast Unbalanced Private Set Union from Fully Homomorphic Encryption
ACM CCS 2023

Technique: use different masking method
additional optimizations are necessary but omit from the talk

6 / 24

Unbalanced mqRPMT from FHE (Oversimplified)

P1 (server)
Y = (y1, . . . , yn1)

P2 (client)
X = (x1, . . . , xn2)

qi ← FHE.Enc(pk, xi)
q⃗ = {q1, . . . , qn2}

z⃗ = {z1, . . . , zn2}
f(α) =

∏
y∈Y (yj − α)

ri
R←− F, fi(x)← ri+f(α)

zi ← FHE.Eval(pk, fi, qi) r′i := FHE.Dec(dk, zi)

PEQT
ri

ei := ri
?
= r′i

r′i

Key idea: use additive masking to hide Y , and disable client to test
cost is roughly same as above plus PEQT cost

7 / 24

Unbalanced mqRPMT from BatchPIR

The mqRPMT construction underlying [ZCL+23] is suitable for the balanced setting.
Can we adapt it to the unbalanced setting as well?

Cong Zhang, Yu Chen, Weiran Liu, Liqiang Peng, Meng Hao, Anyu Wang,
Xiaoyun Wang
Unbalanced Private Set Union with Reduced Computation and Communication
ACM CCS 2024

8 / 24

mqRPMT from OKVS+Encryption+VODM: Revisited

VODM

server
client

Y = (y1, . . . , yn1) X = (x1, . . . , xn2)

{c∗i }
n2
i=1)

k/sk, s ∈M

e = (e1, . . . , en) ∈ {0, 1}n2

k/(pk, sk)← KeyGen(1κ)
s

R←−M
{ci ← Encrypt(k/pk, s)}n1

i=1

D ← Encode({yi, ci}n1
i=1) {c∗i ← Decode(D,xi)}n2

i=1)

Step 1: server (oblivious encoding) + client (oblivious decoding)
communication scales linearly in |D|, which in turn linear in n1

Step 2: server and client engage VODM
communication scales linearly in n2

9 / 24

Attain Sublinear Communication Complexity in Large Set

The communication complexity of step 2 is inherently linear in n2.
We focus on reducing the communication complexity of step 1.

server
client

Y = (y1, . . . , yn1) X = (x1, . . . , xn2)

k/(pk, sk)← KeyGen(1κ)
s

R←−M
{ci ← Encrypt(k/pk, s)}n1

i=1

D ← Encode({yi, ci}n1
i=1) {c∗i ← Decode(D,xi)}n2

i=1)

Key Observation: The above approach achieves “oblivious” decoding by directly
transmitting the entire D to the client, which is the root of linear complexity.

Can we achieve oblivious decoding without transmitting the entire D?
10 / 24

Oblivious Key-Value Store

Existing SOTA OKVS schemes are binary linear OKVS
a.k.a. the essence of Encode algorithm is solving the following linear equation:

−row(x1)−
−row(x2)−

...
−row(xn)−


n×m


d1
d2
...
dm

 =


y1
y2
...
yn

 (1)

where row : K → {0, 1}m is defined by the Encode algorithm and its random tape.
The essence of Decode algorithm is computing subset sum of D = (d1, . . . , dm):

Decode(D,x) = ⟨row(x), D⟩ :=
m∑
j=1

row(x)jdj =
∑

row(x)j=1

dj

11 / 24

Sparse OKVS

Fact: the binary vector row(x) has a long sparse part!

row(x) := sparse(x)︸ ︷︷ ︸
constant weight w

|| dense(x)︸ ︷︷ ︸
random

∈ {0, 1}s+d

where s = O(m), d = o(m).

Using the linearity of inner-product, Decode can be re-written as:

Decode(D,x) = ⟨row(x), D = D0||D1⟩ = ⟨sparse(x), D0⟩+ ⟨dense(x), D1⟩

where |D0| = s = O(m), |D1| = d = o(m).

12 / 24

Batch Private Information Retrieval (Batch PIR)

Batch PIR

server
client

D with size n
I ⊂ [n]

D[i]i∈I

An explicit construction of Batch PIR consists of (Query,Answer,Recover):

server
client

(Q, state)← I = {i1, . . . , ib} ⊂ [n]
Q

R← Answer(D,Q)

(D[1], . . . , D[b])← Recover(state,R)

13 / 24

Batch PIR

Batch PIR scheme satisfies the following properties:
Correctness: For any dataset D, all distinct inputs I = {i1, . . . , ib},
(Q, state)← Query(I):

Recover(state,Answer(D,Q)) = (D[i1], . . . , D[ib])

Query privacy: For any distinct batch query sets I1, I2 with |I1| = |I2|:

Q0 ≈c Q1

where (Qβ , stateβ)← Query(Iβ).
Compactness: |Q|+ |R| = o(n)

14 / 24

Solution: Sparse OKVS + Batch PIR
Idea: directly transmitting the dense but short part, employing batch PIR to
transmitting the sparse yet long part.

server
client

Y = (y1, . . . , yn1) X = (x1, . . . , xn2)

A = {yi, ci}i∈n1

D = D0||D1 ← Encode(A)

D1

Batch PIR
D0

I = {i|sparse(xj)i = 1}

D0[i]

c∗j = Decode(D,xj) =
∑

i∈I D0[i] + ⟨dense(xj), D1⟩

The overall communication complexity is o(n1)

15 / 24

Outline

1 PSO in Unbalanced Setting

2 PSO in Multi-Party Setting

16 / 24

Multi-Party Private Set Operations

PSO has been extensively studied in the last four decades.
The research community focuses on the two-party setting.
Multi-party receives much less attention.

Multi-party PSO is more useful in real-world applications.

X Y

Z

X ∩ Y ∩ Z intersection
|X ∩ Y ∩ Z| cardinality
f(X ∩ Y ∩ Z) general computation

X Y

Z

X ∪ Y ∪ Z union
|X ∪ Y ∪ Z| cardinality
f(X ∪ Y ∪ Z) general computation

X Y

Z

X ∩ (Y ∪ Z) finite set operations
|X ∩ (Y ∪ Z)| cardinality
f(X ∩ (Y ∪ Z)) general computation

17 / 24

Why MPSO is Difficult?

The extension of two-party to multi-party is not easy (even in the semi-honest setting).

Security is more stringent (m = # parties)
two-party scenario: m = 2 ; no collusion attack
multi-party scenario: arbitrary m ≥ 3 ; have to defend against collusion attack

Functionality is more expressive
two-party scenario: only intersection, union, and computation on intersection
multi-party scenario: the number of operations explosively blows up in m

18 / 24

SOTA of MPSO

Multi-party PSI (MPSI) has been well-studied in the last decades

Multi-party PSU (MPSU) and its variants
No MPSU based on OT and symmetric-key techniques is secure against arbitrary
collusion.
No MPSU achieves both linear computation and linear communication complexity.
No protocol is able to compute the cardinality or general function of the union.

Generic MPSO protocols
No MPSO is able to compute arbitrary number of set operations over the private
sets.
No MPSO is able to compute the cardinality or general function of the set
through a finite number of set operations.

19 / 24

Our Work on MPSU

Minglang Dong, Cong Zhang, Yujie Bai, Yu Chen
Efficient Multi-Party Private Set Union Without Non-Collusion Assumptions
USENIX Security 2025

MPSU and its variants
The first MPSU protocol based on OT and symmetric-key techniques that is
secure against arbitrary collusion.
The first MPSU protocol achieving both linear computation and linear
communication complexity.
The first protocol realizing the functionality to compute the cardinality or general
function of the union.

20 / 24

Our Work on MPSO

Minglang Dong, Yu Chen, Cong Zhang, Yujie Bai, Yang Cao
Multi-Party Private Set Operations from Predicative Zero-Sharing
ACM CCS 2025

Generic MPSO
The first MPSO protocol that can compute arbitrary finite number of set
operations over the private sets, and compute the cardinality or general function
of the resulting set.

21 / 24

Thanks for Your Attention!
Any Questions?

22 / 24

Reference I

Hao Chen, Zhicong Huang, Kim Laine, and Peter Rindal.
Labeled PSI from fully homomorphic encryption with malicious security.
In Proceedings of the 2018 ACM SIGSAC Conference on Computer and
Communications Security, CCS 2018, pages 1223–1237. ACM, 2018.
Hao Chen, Kim Laine, and Peter Rindal.
Fast private set intersection from homomorphic encryption.
In Proceedings of the 2017 ACM SIGSAC Conference on Computer and
Communications Security, CCS 2017, pages 1243–1255. ACM, 2017.
Kelong Cong, Radames Cruz Moreno, Mariana Botelho da Gama, Wei Dai, Ilia
Iliashenko, Kim Laine, and Michael Rosenberg.
Labeled PSI from homomorphic encryption with reduced computation and
communication.
In CCS ’21: 2021 ACM SIGSAC Conference on Computer and Communications
Security, pages 1135–1150. ACM, 2021.

23 / 24

Reference II

Cong Zhang, Yu Chen, Weiran Liu, Min Zhang, and Dongdai Lin.
Optimal private set union from multi-query reverse private membership test.
In USENIX Security 2023, 2023.
https://eprint.iacr.org/2022/358.

24 / 24

https://eprint.iacr.org/2022/358

	PSO in Unbalanced Setting
	PSO in Multi-Party Setting

