
A Framework of Private Set Operations from
Multi-query Reverse Private Membership Test

Yu Chen
Shandong University

1 / 52

Talk based on the following joint works

Yu Chen, Min Zhang, Cong Zhang, Minglang Dong, Weiran Liu.
Private Set Operations from Multi Query Reverse Private Membership Test.
PKC 2024.

2 / 52

Outline

1 PSO Framework from mqRPMT

2 Construction of mqRPMT
1st Construction from Commutative Weak PRF
2nd Construction from Permuted Oblivious PRF
Connection Between mqPMT and mqRPMT

3 Comparison and Experimentation

4 Summary

3 / 52

The landscape of PSO is isolated and complex.
Is there a unified yet simple framework?

4 / 52

5 / 52

Outline

1 PSO Framework from mqRPMT

2 Construction of mqRPMT
1st Construction from Commutative Weak PRF
2nd Construction from Permuted Oblivious PRF
Connection Between mqPMT and mqRPMT

3 Comparison and Experimentation

4 Summary

6 / 52

Start Point: multi-query Private Membership Test (mqPMT) underlying PSI

mqPMTserver clientY X = {x1, . . . , xn}

e⃗ ∈ {0, 1}n =

{
ei = 1 xi ∈ Y
ei = 0 xi /∈ Y

sender receiver

Problem: the client learns both xi and ei, a.k.a. the intersection ; not suitable
for protocols that should hide intersection, such as PCSI and PSU.

7 / 52

Start Point: multi-query Private Membership Test (mqPMT) underlying PSI

mqPMTserver clientY X = {x1, . . . , xn}

e⃗ ∈ {0, 1}n =

{
ei = 1 xi ∈ Y
ei = 0 xi /∈ Y

sender receiver

Problem: the client learns both xi and ei, a.k.a. the intersection ; not suitable
for protocols that should hide intersection, such as PCSI and PSU.

7 / 52

The core protocol: multi-query Reverse Private Membership Test (mqRPMT)

mqRPMTserver clientY X = {x1, . . . , xn}

e⃗ ∈ {0, 1}n =

{
ei = 1 xi ∈ Y
ei = 0 xi /∈ Y

The server learns ei, while the client learns xi, a.k.a. the information of
intersection is shared between the two parties ; suitable for all PSO protocols

8 / 52

The core protocol: multi-query Reverse Private Membership Test (mqRPMT)

mqRPMTserver clientY X = {x1, . . . , xn}

e⃗ ∈ {0, 1}n =

{
ei = 1 xi ∈ Y
ei = 0 xi /∈ Y

The server learns ei, while the client learns xi, a.k.a. the information of
intersection is shared between the two parties ; suitable for all PSO protocols

8 / 52

PSO from mqRPMT

mqRPMTserver client
Y

X = {x1, . . . , xn}
e⃗ = (e1, . . . , en)

receiver sender

directly yields PSI-card: |X ∩ Y | is the Hamming weight of e⃗yields PSI coupled with OT: receiver obtains X ∩ Y

OT

ei
(⊥, xi)

zi
zi =

{
⊥ ei = 0
xi ei = 1

yields PSU coupled with OT (flipping e⃗): receiver obtains X − Y

OT

1− ei
(⊥, xi)

zi
zi =

{
xi ei = 0
⊥ ei = 1

yields PSI-card-sum coupled with OT and masking trick

OT

ei
(ri, vi + ri)

zi
V = {v1, . . . , vn}

ri
R←− Zqzi =

{
ri ei = 0

vi + ri ei = 1 ∑n
i=1 zi

receiver obtains |X ∩ Y | sender obtains
∑

xi∈Y vi =
∑n

i=1 zi −
∑n

i=1 ri

yields PSI-card-secret-share coupled with OT and masking trick

OT

ei
(ri, xi ⊕ ri)

zi ri
R←− {0, 1}ℓ

zi =

{
ri ei = 0

xi ⊕ ri ei = 1

receiver obtains |X ∩ Y | and zi sender has xi ⊕ ri

9 / 52

PSO from mqRPMT

mqRPMTserver client
Y

X = {x1, . . . , xn}
e⃗ = (e1, . . . , en)

receiver sender

directly yields PSI-card: |X ∩ Y | is the Hamming weight of e⃗

yields PSI coupled with OT: receiver obtains X ∩ Y

OT

ei
(⊥, xi)

zi
zi =

{
⊥ ei = 0
xi ei = 1

yields PSU coupled with OT (flipping e⃗): receiver obtains X − Y

OT

1− ei
(⊥, xi)

zi
zi =

{
xi ei = 0
⊥ ei = 1

yields PSI-card-sum coupled with OT and masking trick

OT

ei
(ri, vi + ri)

zi
V = {v1, . . . , vn}

ri
R←− Zqzi =

{
ri ei = 0

vi + ri ei = 1 ∑n
i=1 zi

receiver obtains |X ∩ Y | sender obtains
∑

xi∈Y vi =
∑n

i=1 zi −
∑n

i=1 ri

yields PSI-card-secret-share coupled with OT and masking trick

OT

ei
(ri, xi ⊕ ri)

zi ri
R←− {0, 1}ℓ

zi =

{
ri ei = 0

xi ⊕ ri ei = 1

receiver obtains |X ∩ Y | and zi sender has xi ⊕ ri

9 / 52

PSO from mqRPMT

mqRPMTserver client
Y

X = {x1, . . . , xn}
e⃗ = (e1, . . . , en)

receiver sender

directly yields PSI-card: |X ∩ Y | is the Hamming weight of e⃗

yields PSI coupled with OT: receiver obtains X ∩ Y

OT

ei
(⊥, xi)

zi
zi =

{
⊥ ei = 0
xi ei = 1

yields PSU coupled with OT (flipping e⃗): receiver obtains X − Y

OT

1− ei
(⊥, xi)

zi
zi =

{
xi ei = 0
⊥ ei = 1

yields PSI-card-sum coupled with OT and masking trick

OT

ei
(ri, vi + ri)

zi
V = {v1, . . . , vn}

ri
R←− Zqzi =

{
ri ei = 0

vi + ri ei = 1 ∑n
i=1 zi

receiver obtains |X ∩ Y | sender obtains
∑

xi∈Y vi =
∑n

i=1 zi −
∑n

i=1 ri

yields PSI-card-secret-share coupled with OT and masking trick

OT

ei
(ri, xi ⊕ ri)

zi ri
R←− {0, 1}ℓ

zi =

{
ri ei = 0

xi ⊕ ri ei = 1

receiver obtains |X ∩ Y | and zi sender has xi ⊕ ri

9 / 52

PSO from mqRPMT

mqRPMTserver client
Y

X = {x1, . . . , xn}
e⃗ = (e1, . . . , en)

receiver sender

directly yields PSI-card: |X ∩ Y | is the Hamming weight of e⃗yields PSI coupled with OT: receiver obtains X ∩ Y

OT

ei
(⊥, xi)

zi
zi =

{
⊥ ei = 0
xi ei = 1

yields PSU coupled with OT (flipping e⃗): receiver obtains X − Y

OT

1− ei
(⊥, xi)

zi
zi =

{
xi ei = 0
⊥ ei = 1

yields PSI-card-sum coupled with OT and masking trick

OT

ei
(ri, vi + ri)

zi
V = {v1, . . . , vn}

ri
R←− Zqzi =

{
ri ei = 0

vi + ri ei = 1 ∑n
i=1 zi

receiver obtains |X ∩ Y | sender obtains
∑

xi∈Y vi =
∑n

i=1 zi −
∑n

i=1 ri

yields PSI-card-secret-share coupled with OT and masking trick

OT

ei
(ri, xi ⊕ ri)

zi ri
R←− {0, 1}ℓ

zi =

{
ri ei = 0

xi ⊕ ri ei = 1

receiver obtains |X ∩ Y | and zi sender has xi ⊕ ri

9 / 52

PSO from mqRPMT

mqRPMTserver client
Y

X = {x1, . . . , xn}
e⃗ = (e1, . . . , en)

receiver sender

directly yields PSI-card: |X ∩ Y | is the Hamming weight of e⃗yields PSI coupled with OT: receiver obtains X ∩ Y

OT

ei
(⊥, xi)

zi
zi =

{
⊥ ei = 0
xi ei = 1

yields PSU coupled with OT (flipping e⃗): receiver obtains X − Y

OT

1− ei
(⊥, xi)

zi
zi =

{
xi ei = 0
⊥ ei = 1

yields PSI-card-sum coupled with OT and masking trick

OT

ei
(ri, vi + ri)

zi
V = {v1, . . . , vn}

ri
R←− Zqzi =

{
ri ei = 0

vi + ri ei = 1 ∑n
i=1 zi

receiver obtains |X ∩ Y | sender obtains
∑

xi∈Y vi =
∑n

i=1 zi −
∑n

i=1 ri

yields PSI-card-secret-share coupled with OT and masking trick

OT

ei
(ri, xi ⊕ ri)

zi ri
R←− {0, 1}ℓ

zi =

{
ri ei = 0

xi ⊕ ri ei = 1

receiver obtains |X ∩ Y | and zi sender has xi ⊕ ri

9 / 52

PSO from mqRPMT

mqRPMTserver client
Y

X = {x1, . . . , xn}
e⃗ = (e1, . . . , en)

receiver sender

directly yields PSI-card: |X ∩ Y | is the Hamming weight of e⃗yields PSI coupled with OT: receiver obtains X ∩ Y

OT

ei
(⊥, xi)

zi
zi =

{
⊥ ei = 0
xi ei = 1

yields PSU coupled with OT (flipping e⃗): receiver obtains X − Y

OT

1− ei
(⊥, xi)

zi
zi =

{
xi ei = 0
⊥ ei = 1

yields PSI-card-sum coupled with OT and masking trick

OT

ei
(ri, vi + ri)

zi
V = {v1, . . . , vn}

ri
R←− Zqzi =

{
ri ei = 0

vi + ri ei = 1 ∑n
i=1 zi

receiver obtains |X ∩ Y | sender obtains
∑

xi∈Y vi =
∑n

i=1 zi −
∑n

i=1 ri

yields PSI-card-secret-share coupled with OT and masking trick

OT

ei
(ri, xi ⊕ ri)

zi ri
R←− {0, 1}ℓ

zi =

{
ri ei = 0

xi ⊕ ri ei = 1

receiver obtains |X ∩ Y | and zi sender has xi ⊕ ri

9 / 52

Private-ID

receiver sender

Private-ID

(y1, . . . , yn)

(id(y1), . . . , id(yn))

(x1, . . . , xn)

(id(x1), . . . , id(xn))

id(X ∪ Y)

Buddhavarapu et al. [BKM+20] proposed private-ID:
assigns two parties a random identifier per item
each party obtains identifiers to his own set, as well as identifiers of the union

With private-ID, two parties can sort their private set w.r.t. a global set of identifiers,
and then can proceed any desired private computation item by item, being assured
that identical items are aligned.

10 / 52

Prior Construction of Private-ID

[BKM+20] gave a concrete DDH-based protocol. [GMR+21] showed how to build
private-ID from OPRF and PSU.

receiver sender

Y = (y1, . . . , yn) X = (x1, . . . , xn)
F : K ×D → R

where R is an abelian group

OPRFk1
xi

Fk1(xi)

OPRF k2
yi

Fk2(yi)

run OPRF twice in reverse order: id(z) := Fk1(z)⊕ Fk2(z)

PSU
id(Y)

id(X)
id(X ∪ Y)

11 / 52

Our Construction of Private-ID
receiver sender

Y = (y1, . . . , yn) X = (x1, . . . , xn)

G : K ×D → R where K = K1 ×K2

distributed
OPRF

{yi}ni=1

k1, {Gk1,k2(yi)}ni=1

{xi}ni=1

k2, {Gk1,k2(xi)}ni=1

set id(z) = Gk1,k2(z)

standard notion are defined w.r.t. any private inputs ; arbitrary protocol composition
relaxed notion w.r.t. distribution of private inputs ; efficiency improvement

distributional
PSU

id(Y)
id(X)

id(X ∪ Y)

12 / 52

Outline

1 PSO Framework from mqRPMT

2 Construction of mqRPMT
1st Construction from Commutative Weak PRF
2nd Construction from Permuted Oblivious PRF
Connection Between mqPMT and mqRPMT

3 Comparison and Experimentation

4 Summary

13 / 52

Outline

1 PSO Framework from mqRPMT

2 Construction of mqRPMT
1st Construction from Commutative Weak PRF
2nd Construction from Permuted Oblivious PRF
Connection Between mqPMT and mqRPMT

3 Comparison and Experimentation

4 Summary

14 / 52

Starting Point: PEQT

PEQT

Private Equality Test

server client
y x

e := x
?
= y

Observation: PEQT is not only an extreme case of mqPMT, but also an extreme case
of mqRPMT
Goal: build PEQT amenable to extension:

y ; Y = {y1, . . . , ym}, x ; X = {x1, . . . , xn}, e ; e⃗ = (e1, . . . , en)

15 / 52

Starting Point: PEQT

PEQT

Private Equality Test

server client
y x

e := x
?
= y

Observation: PEQT is not only an extreme case of mqPMT, but also an extreme case
of mqRPMT
Goal: build PEQT amenable to extension:

y ; Y = {y1, . . . , ym}, x ; X = {x1, . . . , xn}, e ; e⃗ = (e1, . . . , en)

15 / 52

High-level Idea

oblivious joint encoding (element)

encoding must be done by two
parties sequentially, while the
codeword is order-irrelevant

the encoding process reveals
no additional information

pseudorandom “commutative” keyed function

16 / 52

Commutative Weak PRF
We first formally define two standard properties for keyed functions.
Composable. For a family of keyed functions F : K ×D → R, F is 2-composable if
R ⊆ D (special case R = D) ; Fk1(Fk2(·)) is well-defined.
Commutative. A family of composable keyed functions is commutative if:

∀k1, k2 ∈ K, ∀x ∈ D : Fk1(Fk2(x)) = Fk2(Fk1(x))

Definition 1 (Commutative Weak PRF)
F : K ×D → D is cwPRF if it satisfies weak pseudorandomness (k R←− K, x R←− X) and
commutative property simultaneously. When F is a permutation, we say F is cwPRP.

Why merely weak pseudorandomness?
Commutativity denies standard pseudorandomness. Consider the following attack:

A picks k′
R←− K, x R←− D, queries the real-or-random oracle at point Fk′(x) and x,

receiving y′ and y. A then outputs ‘1’ iff Fk′(y) = y′

Fk′(y = Fk(x)) = Fk(Fk′(x)) = y′

17 / 52

Commutative Weak PRF
We first formally define two standard properties for keyed functions.
Composable. For a family of keyed functions F : K ×D → R, F is 2-composable if
R ⊆ D (special case R = D) ; Fk1(Fk2(·)) is well-defined.
Commutative. A family of composable keyed functions is commutative if:

∀k1, k2 ∈ K, ∀x ∈ D : Fk1(Fk2(x)) = Fk2(Fk1(x))

Definition 1 (Commutative Weak PRF)
F : K ×D → D is cwPRF if it satisfies weak pseudorandomness (k R←− K, x R←− X) and
commutative property simultaneously. When F is a permutation, we say F is cwPRP.

Why merely weak pseudorandomness?
Commutativity denies standard pseudorandomness. Consider the following attack:

A picks k′
R←− K, x R←− D, queries the real-or-random oracle at point Fk′(x) and x,

receiving y′ and y. A then outputs ‘1’ iff Fk′(y) = y′

Fk′(y = Fk(x)) = Fk(Fk′(x)) = y′

17 / 52

Commutative Weak PRF
We first formally define two standard properties for keyed functions.
Composable. For a family of keyed functions F : K ×D → R, F is 2-composable if
R ⊆ D (special case R = D) ; Fk1(Fk2(·)) is well-defined.
Commutative. A family of composable keyed functions is commutative if:

∀k1, k2 ∈ K, ∀x ∈ D : Fk1(Fk2(x)) = Fk2(Fk1(x))

Definition 1 (Commutative Weak PRF)
F : K ×D → D is cwPRF if it satisfies weak pseudorandomness (k R←− K, x R←− X) and
commutative property simultaneously. When F is a permutation, we say F is cwPRP.

Why merely weak pseudorandomness?
Commutativity denies standard pseudorandomness. Consider the following attack:

A picks k′
R←− K, x R←− D, queries the real-or-random oracle at point Fk′(x) and x,

receiving y′ and y. A then outputs ‘1’ iff Fk′(y) = y′

Fk′(y = Fk(x)) = Fk(Fk′(x)) = y′ 17 / 52

Construction of cwPRF

Construction (DDH-based cwPRF)
Setup(1κ): runs GroupGen(1κ)→ (G, g, p), output pp = (G, g, p) which defines

F : Zp ×G→ G as Fk(x) := xk

KeyGen(pp): outputs k
R←− Zp.

Eval(k, x): on input k ∈ Zp and x ∈ G, outputs xk.

DDH assumption ⇒ weak pseudorandomness
Commutativity: ∀k1, k2 ∈ K and ∀x ∈ D: Fk1(Fk2(x)) = xk1k2 = Fk2(Fk1(x))

cwPRF is the “right” cryptographic abstraction of the classic DH function

18 / 52

Post-quantum Secure cwPRF
cwPRF can be analogously built from weak pseudorandom efficient group action,
which is in turn based on supersingular isogeny assumption.

Supersingular isogeny is still believed to be post-quantum secure so far, but its
presumed post-quantum security is shaky.

Can we build cwPRF from lattice-based assumption?

Note that cwPRF ⇒ NIKE.

(a, Fa(x)) (b, Fb(x))

Fa(Fb(x)) = k = Fb(Fa(x))

non-interactive key-exchange

A recent result of Guo et al. [GKRS22] indicated that it would be difficult to construct
NIKE from lattice-based assumptions.

giving lattice-based cwPRF or proving impossibility will lead to progress on some other
well-studied questions in cryptography

19 / 52

Post-quantum Secure cwPRF
cwPRF can be analogously built from weak pseudorandom efficient group action,
which is in turn based on supersingular isogeny assumption.

Supersingular isogeny is still believed to be post-quantum secure so far, but its
presumed post-quantum security is shaky.

Can we build cwPRF from lattice-based assumption?

Note that cwPRF ⇒ NIKE.

(a, Fa(x)) (b, Fb(x))

Fa(Fb(x)) = k = Fb(Fa(x))

non-interactive key-exchange

A recent result of Guo et al. [GKRS22] indicated that it would be difficult to construct
NIKE from lattice-based assumptions.

giving lattice-based cwPRF or proving impossibility will lead to progress on some other
well-studied questions in cryptography

19 / 52

Post-quantum Secure cwPRF
cwPRF can be analogously built from weak pseudorandom efficient group action,
which is in turn based on supersingular isogeny assumption.

Supersingular isogeny is still believed to be post-quantum secure so far, but its
presumed post-quantum security is shaky.

Can we build cwPRF from lattice-based assumption?

Note that cwPRF ⇒ NIKE.

(a, Fa(x)) (b, Fb(x))

Fa(Fb(x)) = k = Fb(Fa(x))

non-interactive key-exchange

A recent result of Guo et al. [GKRS22] indicated that it would be difficult to construct
NIKE from lattice-based assumptions.

giving lattice-based cwPRF or proving impossibility will lead to progress on some other
well-studied questions in cryptography

19 / 52

Randomness Enhancement

But what we need for mqRPMT is standard pseudorandomness.
Solution: hash-then-evaluate

Domain extension: handle arbitrary domain X = {0, 1}∗

Randomness amplification: weak ; standard

D R
weak PRF Fk(·)

X
random oracle H

randomness amplification

standard PRF Fk(H(·)) : K ×X → R

Commutativity still holds w.r.t. H (suffice for mqRPMT)

Fk1(Fk2(H(x))) = Fk2(Fk1(H(x)))

20 / 52

mqRPMT from cwPRF

PEQTP1 (server)
y

k1
R←− K

P2 (client)
x

k2
R←− K

Fk1(H(y))

Fk2(H(x))

Fk2(Fk1(H(y)))

partial encoding

set e = 1 iff
Fk1(Fk2(H(x)))

?
= Fk2(Fk1(H(y)))

mqRPMTP1 (server)
Y = {y1, . . . , yn1}

k1
R←− K

P2 (client)
X = {x1, . . . , xn2}

k2
R←− K

{Fk1(H(yi))}i∈[n1]

{Fk2(H(xi))}i∈[n2]

set ei = 1 iff
Fk1(Fk2(H(xi))) ∈ Ω Ω← {Fk2(Fk1(H(yi)))}i∈[n1]

send encoding in order reveals intersection!

Ω← {Fk2(Fk1(H(yπ(i)))}i∈[n1] π
R←− Perm[n1]

send encoding in permuted order

Ω← BloomFilter({Fk2(Fk1(H(yi))}i∈[n1])

more space efficient: admit small false positive probability

21 / 52

mqRPMT from cwPRF

PEQTP1 (server)
y

k1
R←− K

P2 (client)
x

k2
R←− K

Fk1(H(y))

Fk2(H(x))

Fk2(Fk1(H(y)))

partial encoding

set e = 1 iff
Fk1(Fk2(H(x)))

?
= Fk2(Fk1(H(y)))

mqRPMTP1 (server)
Y = {y1, . . . , yn1}

k1
R←− K

P2 (client)
X = {x1, . . . , xn2}

k2
R←− K

{Fk1(H(yi))}i∈[n1]

{Fk2(H(xi))}i∈[n2]

set ei = 1 iff
Fk1(Fk2(H(xi))) ∈ Ω Ω← {Fk2(Fk1(H(yi)))}i∈[n1]

send encoding in order reveals intersection!

Ω← {Fk2(Fk1(H(yπ(i)))}i∈[n1] π
R←− Perm[n1]

send encoding in permuted order

Ω← BloomFilter({Fk2(Fk1(H(yi))}i∈[n1])

more space efficient: admit small false positive probability

21 / 52

mqRPMT from cwPRF

PEQTP1 (server)
y

k1
R←− K

P2 (client)
x

k2
R←− K

Fk1(H(y))

Fk2(H(x))

Fk2(Fk1(H(y)))

partial encoding

set e = 1 iff
Fk1(Fk2(H(x)))

?
= Fk2(Fk1(H(y)))

mqRPMTP1 (server)
Y = {y1, . . . , yn1}

k1
R←− K

P2 (client)
X = {x1, . . . , xn2}

k2
R←− K

{Fk1(H(yi))}i∈[n1]

{Fk2(H(xi))}i∈[n2]

set ei = 1 iff
Fk1(Fk2(H(xi))) ∈ Ω Ω← {Fk2(Fk1(H(yi)))}i∈[n1]

send encoding in order reveals intersection!

Ω← {Fk2(Fk1(H(yπ(i)))}i∈[n1] π
R←− Perm[n1]

send encoding in permuted order

Ω← BloomFilter({Fk2(Fk1(H(yi))}i∈[n1])

more space efficient: admit small false positive probability

21 / 52

mqRPMT from cwPRF

PEQTP1 (server)
y

k1
R←− K

P2 (client)
x

k2
R←− K

Fk1(H(y))

Fk2(H(x))

Fk2(Fk1(H(y)))

partial encoding

set e = 1 iff
Fk1(Fk2(H(x)))

?
= Fk2(Fk1(H(y)))

mqRPMTP1 (server)
Y = {y1, . . . , yn1}

k1
R←− K

P2 (client)
X = {x1, . . . , xn2}

k2
R←− K

{Fk1(H(yi))}i∈[n1]

{Fk2(H(xi))}i∈[n2]

set ei = 1 iff
Fk1(Fk2(H(xi))) ∈ Ω

Ω← {Fk2(Fk1(H(yi)))}i∈[n1]

send encoding in order reveals intersection!

Ω← {Fk2(Fk1(H(yπ(i)))}i∈[n1] π
R←− Perm[n1]

send encoding in permuted order

Ω← BloomFilter({Fk2(Fk1(H(yi))}i∈[n1])

more space efficient: admit small false positive probability

21 / 52

mqRPMT from cwPRF

PEQTP1 (server)
y

k1
R←− K

P2 (client)
x

k2
R←− K

Fk1(H(y))

Fk2(H(x))

Fk2(Fk1(H(y)))

partial encoding

set e = 1 iff
Fk1(Fk2(H(x)))

?
= Fk2(Fk1(H(y)))

mqRPMTP1 (server)
Y = {y1, . . . , yn1}

k1
R←− K

P2 (client)
X = {x1, . . . , xn2}

k2
R←− K

{Fk1(H(yi))}i∈[n1]

{Fk2(H(xi))}i∈[n2]

set ei = 1 iff
Fk1(Fk2(H(xi))) ∈ Ω

Ω← {Fk2(Fk1(H(yi)))}i∈[n1]

send encoding in order reveals intersection!

Ω← {Fk2(Fk1(H(yπ(i)))}i∈[n1] π
R←− Perm[n1]

send encoding in permuted order

Ω← BloomFilter({Fk2(Fk1(H(yi))}i∈[n1])

more space efficient: admit small false positive probability
21 / 52

Complexity Analysis

Consider the balanced setting: n1 = n2 = n

Table: Complexity of cwPRF-based mqRPMT.

Computation 4n× Fk(·) + 2n× H(·) hash-to-domain
Communication 3n× |D| or 2n× |D|+ n · 1.44λ (≪ |D|)

cwPRF-based mqRPMT is optimal in the sense that both computation and
communication complexities are strictly linear in n

Instantiating the PSO framework with cwPRF-based mqRPMT, DDH assumption
strikes back with the first strictly linear PSU protocol

incredibly simple and efficient

22 / 52

Outline

1 PSO Framework from mqRPMT

2 Construction of mqRPMT
1st Construction from Commutative Weak PRF
2nd Construction from Permuted Oblivious PRF
Connection Between mqPMT and mqRPMT

3 Comparison and Experimentation

4 Summary

23 / 52

Starting Point: mqPMT/PSI from OPRF

OPRF

Oblivious PRF

P1 (server) P2 (client)
(x1, . . . , xn)

k
R←− K

x1, . . . , xn

Fk(x1), . . . , Fk(xn)

mqPMT/PSI
P1 (server/sender)

(y1, . . . , yn1)
P2 (client/receiver)

(x1, . . . , xn2)OPRFk
R←− K

x1, . . . , xn2

Fk(x1), . . . , Fk(xn2)

Fk(y1), . . . , Fk(yn1) check if
Fk(xi) ∈ {Fk(yj)}j∈[n2]

play the role of oblivious encoding
order preserving ; reveal intersection

to enable mqRPMT
we need permuted oblivious encoding

24 / 52

Starting Point: mqPMT/PSI from OPRF

OPRF

Oblivious PRF

P1 (server) P2 (client)
(x1, . . . , xn)

k
R←− K

x1, . . . , xn

Fk(x1), . . . , Fk(xn)

mqPMT/PSI
P1 (server/sender)

(y1, . . . , yn1)
P2 (client/receiver)

(x1, . . . , xn2)OPRFk
R←− K

x1, . . . , xn2

Fk(x1), . . . , Fk(xn2)

Fk(y1), . . . , Fk(yn1) check if
Fk(xi) ∈ {Fk(yj)}j∈[n2]

play the role of oblivious encoding
order preserving ; reveal intersection

to enable mqRPMT
we need permuted oblivious encoding

24 / 52

Starting Point: mqPMT/PSI from OPRF

OPRF

Oblivious PRF

P1 (server) P2 (client)
(x1, . . . , xn)

k
R←− K

x1, . . . , xn

Fk(x1), . . . , Fk(xn)

mqPMT/PSI
P1 (server/sender)

(y1, . . . , yn1)
P2 (client/receiver)

(x1, . . . , xn2)OPRFk
R←− K

x1, . . . , xn2

Fk(x1), . . . , Fk(xn2)

Fk(y1), . . . , Fk(yn1) check if
Fk(xi) ∈ {Fk(yj)}j∈[n2]

play the role of oblivious encoding
order preserving ; reveal intersection

to enable mqRPMT
we need permuted oblivious encoding

24 / 52

Starting Point: mqPMT/PSI from OPRF

OPRF

Oblivious PRF

P1 (server) P2 (client)
(x1, . . . , xn)

k
R←− K

x1, . . . , xn

Fk(x1), . . . , Fk(xn)

mqPMT/PSI
P1 (server/sender)

(y1, . . . , yn1)
P2 (client/receiver)

(x1, . . . , xn2)OPRFk
R←− K

x1, . . . , xn2

Fk(x1), . . . , Fk(xn2)

Fk(y1), . . . , Fk(yn1) check if
Fk(xi) ∈ {Fk(yj)}j∈[n2]

play the role of oblivious encoding
order preserving ; reveal intersection

to enable mqRPMT
we need permuted oblivious encoding

24 / 52

mqRPMT from Permuted OPRF

permuted
OPRF

a generalization of OPRF

P1 (server) P2 (client)
(x1, . . . , xn)

k
R←− K

π
R←− Perm[n]

x1, . . . , xn

Fk(xπ(1)), . . . , Fk(xπ(n))

mqRPMT

permuted
OPRF

client
(x1, . . . , xn2)

server
(y1, . . . , yn1)

k
R←− K

π
R←− Perm[n1]

y1, . . . , yn1

Fk(yπ(1)), . . . , Fk(yπ(n1))

= Ω

Fk(x1), . . . , Fk(xn2) set ei = 1 iff
Fk(xi) ∈ Ω

25 / 52

mqRPMT from Permuted OPRF

permuted
OPRF

a generalization of OPRF

P1 (server) P2 (client)
(x1, . . . , xn)

k
R←− K

π
R←− Perm[n]

x1, . . . , xn

Fk(xπ(1)), . . . , Fk(xπ(n))

mqRPMT

permuted
OPRF

client
(x1, . . . , xn2)

server
(y1, . . . , yn1)

k
R←− K

π
R←− Perm[n1]

y1, . . . , yn1

Fk(yπ(1)), . . . , Fk(yπ(n1))

= Ω

Fk(x1), . . . , Fk(xn2) set ei = 1 iff
Fk(xi) ∈ Ω

25 / 52

mqRPMT from Permuted OPRF

permuted
OPRF

a generalization of OPRF

P1 (server) P2 (client)
(x1, . . . , xn)

k
R←− K

π
R←− Perm[n]

x1, . . . , xn

Fk(xπ(1)), . . . , Fk(xπ(n))

mqRPMT

permuted
OPRF

client
(x1, . . . , xn2)

server
(y1, . . . , yn1)

k
R←− K

π
R←− Perm[n1]

y1, . . . , yn1

Fk(yπ(1)), . . . , Fk(yπ(n1))

= Ω

Fk(x1), . . . , Fk(xn2) set ei = 1 iff
Fk(xi) ∈ Ω

25 / 52

Build Permuted OPRF from cwPRP

A common approach to build OPRF is “mask-then-unmask” via homomorphism

OPRF for G : K ×X → Z

server
k

client
(x1, . . . , xn)x̂1, . . . , x̂n mask input

ẑ1 = G′
k(x̂1), . . . , ẑn = G′

k(x̂n)evaluate unmask output: ẑi → zi

if unmask ops are unified:
independent of input

shuffle ; permuted OPRF

cwPRP enables simplest unified mask-then-unmask
mask: x̂← Fs(H(x))
evaluate: ẑ ← Fk(x̂)

unmask: z ← F−1
s (Fk(x̂)) = Fk(F

−1
s (x̂)) = Fk(H(x))

26 / 52

Build Permuted OPRF from cwPRP

A common approach to build OPRF is “mask-then-unmask” via homomorphism

OPRF for G : K ×X → Z

server
k

client
(x1, . . . , xn)x̂1, . . . , x̂n mask input

ẑ1 = G′
k(x̂1), . . . , ẑn = G′

k(x̂n)evaluate unmask output: ẑi → zi

if unmask ops are unified:
independent of input

shuffle ; permuted OPRF

cwPRP enables simplest unified mask-then-unmask
mask: x̂← Fs(H(x))
evaluate: ẑ ← Fk(x̂)

unmask: z ← F−1
s (Fk(x̂)) = Fk(F

−1
s (x̂)) = Fk(H(x))

26 / 52

Build Permuted OPRF from cwPRP

A common approach to build OPRF is “mask-then-unmask” via homomorphism

OPRF for G : K ×X → Z

server
k

client
(x1, . . . , xn)x̂1, . . . , x̂n mask input

ẑ1 = G′
k(x̂1), . . . , ẑn = G′

k(x̂n)evaluate unmask output: ẑi → zi

if unmask ops are unified:
independent of input

shuffle ; permuted OPRF

cwPRP enables simplest unified mask-then-unmask
mask: x̂← Fs(H(x))
evaluate: ẑ ← Fk(x̂)

unmask: z ← F−1
s (Fk(x̂)) = Fk(F

−1
s (x̂)) = Fk(H(x))

26 / 52

Permuted OPRF from DDH-based cwPRP

Observe that the DDH-based cwPRF is actually a cwPRP F : Zp ×G→ G.
combine H : {0, 1}∗ → G ⇒ permuted OPRF protocol for G : Zp × {0, 1}∗ → G
defined as Gk(x) = Fk(H(x)).

pOPRF for Gk(x) = Fk(H(x))

server client
(x1, . . . , xn)x̂1 = H(x1)

s, . . . , x̂n = H(xn)
s

s
R←− Zp

ẑπ(1) = x̂π(1)
k
, . . . , ẑπ(n) = x̂π(n)

k

k
R←− Zp

π
R←− Perm[n]

zπ(i) ← ẑπ(i)
s−1

27 / 52

Comparison of mqRPMT from cwPRF and pOPRF

Primitive Assumption implied by X25519 Bloom filter optimization
cwPRF DDH ✓ ✓
pOPRF DDH 7 7

the pOPRF-based mqRPMT is more of theoretical interest
It can be viewed as a counterpart of OPRF-based mqPMT construction
So far, we only know how to build pOPRF based on assumptions with nice algebra
structure, but not from fast primitives such as OT or VOLE.

This somehow explains the efficiency gap between mqPMT and mqRPMT.

28 / 52

Outline

1 PSO Framework from mqRPMT

2 Construction of mqRPMT
1st Construction from Commutative Weak PRF
2nd Construction from Permuted Oblivious PRF
Connection Between mqPMT and mqRPMT

3 Comparison and Experimentation

4 Summary

29 / 52

Sigma-mqPMT

Given the efficiency gap between PSI and other PSO protocols, it is intriguing to study
the connection between mqPMT and mqRPMT.

Towards this goal, we first abstract a category of mqPMT called Sigma-mqPMT.

P1 (server)
Y = (y1, . . . , yn1)

P2 (client)
X = (x1, . . . , xn2)

a← Encode(Y)
a

qi ← GenQuery(a, xi)
q⃗ = {q1, . . . , qn2}

z⃗ = {z1, . . . , zn2}
zi ← Response(qi) ei ← Test(a, zi)

Reusable: a (best interpreted as encoding of Y) can be safely reused.
Context-independent: qi is only related to a, xi under test and P2’s randomness.
Stateless test: Test algorithm can work without knowing (xi, qi).

30 / 52

mqRPMT∗ from Sigma-mqPMT

P1 (server)
Y = (y1, . . . , yn1)

P2 (client)
X = (x1, . . . , xn2)

a← mqPMT.Encode(Y)
a

qi ← mqPMT.GenQuery(a, xi)
q⃗ = {q1, . . . , qn2}

π
R←− Perm[n2]

z⃗∗ = {zπ(1), . . . , zπ(n2)}

e∗i ← mqPMT.Test(a, z∗i)
e⃗∗ = {e∗1, . . . , e∗n2

}
e⃗ = {e∗π−1(i)}

n2
i=1

Via the “permute-then-test” approach, we can tweak Sigma-mqPMT to mqRPMT∗

(additionally reveal intersection size to client).
translate a category of PSI protocols (such as [Mea86, FIPR05, CLR17]) to other
PSO protocols (allowing both parties learn the intersection size).
make the initial step towards establishing the connection between mqRPMT and
mqPMT.

31 / 52

Summary of Main Results

mqRPMT

commutative
weak PRF

permuted
oblivious PRF

enhanced version

PSI/PSU PSI-card-[sum/secret-sharing] PSI-card

OT OT+SS

Sigma-mqPMT

permuted
mqPMT

shuffle-then-test

mqRPMT∗

32 / 52

Outline

1 PSO Framework from mqRPMT

2 Construction of mqRPMT
1st Construction from Commutative Weak PRF
2nd Construction from Permuted Oblivious PRF
Connection Between mqPMT and mqRPMT

3 Comparison and Experimentation

4 Summary

33 / 52

Cryptographic Engineering Matters
We implement our PSO framework via the following vein

EC groups DDH-based cwPRF ; mqRPMT ; PSO framework

1 NIST P-256 ♦ ▼ (also known as secp256r1 and prime256v1)
hash-to-point operation is expensive ≈ non-fixed Exp
point compression halves communication cost; point decompression is expensive ≈ non-fixed Exp

2 Curve25519 ⋆ (de facto alternative of NIST P-256)
numerous merits: no backdoor, fast Exp, immunity against side-channel attacks
allow “Exp” with only X-coordinate ; halve communication & no decompression
any 32-byte bit array corresponds to the X-coordinate of a valid EC point ;
hash-to-point operation is almost free

For the first time, Curve25519 fully unleashes its power in PSO area.
Correct the prejudice that “public-key operations are expensive”:

By leveraging optimized implementation, their performances are comparable
with symmetric-key operations

34 / 52

Cryptographic Engineering Matters
We implement our PSO framework via the following vein

EC groups DDH-based cwPRF ; mqRPMT ; PSO framework
1 NIST P-256 ♦ ▼ (also known as secp256r1 and prime256v1)

hash-to-point operation is expensive ≈ non-fixed Exp
point compression halves communication cost; point decompression is expensive ≈ non-fixed Exp

2 Curve25519 ⋆ (de facto alternative of NIST P-256)
numerous merits: no backdoor, fast Exp, immunity against side-channel attacks
allow “Exp” with only X-coordinate ; halve communication & no decompression
any 32-byte bit array corresponds to the X-coordinate of a valid EC point ;
hash-to-point operation is almost free

For the first time, Curve25519 fully unleashes its power in PSO area.
Correct the prejudice that “public-key operations are expensive”:

By leveraging optimized implementation, their performances are comparable
with symmetric-key operations

34 / 52

Cryptographic Engineering Matters
We implement our PSO framework via the following vein

EC groups DDH-based cwPRF ; mqRPMT ; PSO framework
1 NIST P-256 ♦ ▼ (also known as secp256r1 and prime256v1)

hash-to-point operation is expensive ≈ non-fixed Exp
point compression halves communication cost; point decompression is expensive ≈ non-fixed Exp

2 Curve25519 ⋆ (de facto alternative of NIST P-256)
numerous merits: no backdoor, fast Exp, immunity against side-channel attacks
allow “Exp” with only X-coordinate ; halve communication & no decompression
any 32-byte bit array corresponds to the X-coordinate of a valid EC point ;
hash-to-point operation is almost free

For the first time, Curve25519 fully unleashes its power in PSO area.
Correct the prejudice that “public-key operations are expensive”:

By leveraging optimized implementation, their performances are comparable
with symmetric-key operations

34 / 52

Cryptographic Engineering Matters
We implement our PSO framework via the following vein

EC groups DDH-based cwPRF ; mqRPMT ; PSO framework
1 NIST P-256 ♦ ▼ (also known as secp256r1 and prime256v1)

hash-to-point operation is expensive ≈ non-fixed Exp
point compression halves communication cost; point decompression is expensive ≈ non-fixed Exp

2 Curve25519 ⋆ (de facto alternative of NIST P-256)
numerous merits: no backdoor, fast Exp, immunity against side-channel attacks
allow “Exp” with only X-coordinate ; halve communication & no decompression
any 32-byte bit array corresponds to the X-coordinate of a valid EC point ;
hash-to-point operation is almost free

For the first time, Curve25519 fully unleashes its power in PSO area.
Correct the prejudice that “public-key operations are expensive”:

By leveraging optimized implementation, their performances are comparable
with symmetric-key operations

34 / 52

Implementation Features

Modular design: admit flexible combination to support various scenarios

Minimum dependency: only require OpenSSL and OpenMP

Multi-platforms: run smoothly on Linux and MacOS

Rich functionality: support all PSO operations

Highly parallelizable: scalable ; support large-scale applications

35 / 52

Implementation Details

Dev/Test environment Other Parameters
CPU = Intel i7 2.50 GHZ κ = 128, λ = 40

Physical core = 8 item length= 128 bits
RAM = 8GB set sizes= {212, 216, 220}

OS = Ubuntu 20.04 LAN = 10Gbps, WAN = 50Mbps, RTT= 80ms

Protocols:
mqRPMT, PSI, PSI-card, PSI-card-sum, PSU, Private-ID

Test items:
Functionality
Computation cost: total running time
Communication cost: sum of two parties

36 / 52

Core protocol: mqRPMT

Protocol T
Running time (s) Comm. (MB)

LAN WAN total
212 216 220 212 216 220 212 216 220

mqRPMT♦
1 0.50 7.20 114.16 1.39 9.68 136.27

0.52 8.35 133.62 0.31 3.89 62.09 1.14 6.54 86.60
4 0.22 2.37 40.41 1.11 5.08 62.77

Speedup 1.6-2.3 × 1.9-3.0 × 1.8-2.8 × 1.2-1.3 × 1.5-1.9 × 1.6-2.2 × – – –

mqRPMT▼
1 0.50 8.00 128.00 1.35 10.15 141.52

0.27 4.35 69.62 0.32 5.05 80.69 1.18 7.11 94.19
4 0.23 3.54 58.40 1.08 5.54 71.26

Speedup 1.6-2.2 × 1.6-2.3 × 1.6-2.2 × 1.1-1.3× 1.4-1.8 × 1.5-2 × – – –

mqRPMT⋆
1 0.26 3.51 54.85 0.81 5.41 68.68

0.26 4.23 67.662 0.15 1.79 28.24 0.75 3.83 41.38
4 0.10 1.07 15.32 0.72 3.09 28.31

Speedup 1.7-2.6 × 2.0-3.3 × 1.9-3.6 × 1.1-1.1 × 1.4-1.8 × 1.7-2.4 × – – –

strict linear complexity & high parallelism
220 scale: #time < 15s using 4 threads on laptop, #communication < 70M

37 / 52

PSI: Performance and Comparison

PSI
Running time (s) Comm. (MB)

LAN WAN total
212 216 220 212 216 220 212 216 220

[PRTY19]⋆ 5.51 88.64 1418.20 5.82 90.79 1498.67 0.30 4.74 76.60
Our PSI♦ 0.50 7.24 114.66 1.71 10.50 142.45 0.68 10.61 169.37
Our PSI▼ 0.55 8.04 128.18 1.73 11.02 148.18 0.42 6.61 105.23
Our PSI⋆ 0.29 3.56 55.11 1.19 6.38 75.56 0.41 6.48 103.31
DH-PSI⋆ 0.22 3.39 54.79 0.92 5.57 69.31 0.28 4.57 74.1

compared to existing DH-PSI implementation: # time speeds up 4.9-25.7×

PSI
Running time (ms) Comm. (KB)

LAN WAN total
28 29 210 28 29 210 28 29 210

[RT21]⋆ 50.0 71.0 147.3 224.1 260.2 457.9 17.9 34.1 66.3
Our PSI⋆ 41.9 69.5 99.3 577.0 582.9 646.1 38.6 63.5 113.3
DH-PSI⋆ 16.49 31.80 56.91 210.42 227.33 252.32 18.48 36.68 72.8

achieve the fastest speed in small set setting (< 210)

38 / 52

PSI-card: Performance and Comparison

Our framework unifies and explains prior protocols
DDH-cwPRF-based mqRPMT: recover PSI-card [HFH99] (add Bloom filter
optimization)
DDH-pOPRF-based mqRPMT: recover PSI-card [CGT12]

PSI-card
Running time (s) Comm. (MB)

LAN WAN total
212 216 220 212 216 220 212 216 220

[GMR+21] 1.00 8.41 126.01 8.60 27.46 323.52 2.93 55.49 1030
Our PSI-card♦ 0.49 7.20 114.31 1.30 9.68 136.06 0.53 8.59 137.31
Our PSI-card▼ 0.53 8.00 128.00 1.35 10.16 141.31 0.28 4.58 73.20
Our PSI-card⋆ 0.27 3.51 54.89 0.82 5.42 68.31 0.27 4.46 71.30

compared to the SOTA
time speeds up 2.3-10.5×, # communication reduces 11.3-15.2×

39 / 52

PSI-card-sum: Performance and Comparison

PSI-card-sum
Running time (s) Comm. (MB)

LAN WAN total
212 216 220 212 216 220 212 216 220

[IKN+20]▼ (deployed) 23.64 176.34 – 30.10 186.29 – 2.72 43.24 –
Our PSI-card-sum♦ 0.51 7.22 113.66 1.46 9.68 136.27 0.65 10.12 161.40
Our PSI-card-sum▼ 0.57 8.12 129.66 1.94 11.83 157.66 0.39 6.10 97.34
Our PSI-card-sum⋆ 0.31 3.73 57.44 1.36 6.53 76.16 0.37 5.75 95.30

compared to the SOTA
time speeds up 22.1-76.3×, # communication reduces 7.4-7.5×

40 / 52

PSU: Performance and Comparison

PSU
Running time (s) Comm. (MB)

LAN WAN total
212 216 220 212 216 220 212 216 220

[GMR+21] 1.16 10.06 151.34 10.34 38.52 349.43 3.85 67.38 1155
[?]♦ 4.87 12.19 141.38 5.78 15.75 182.88 1.35 21.41 342.38
[?]▼ 5.10 15.13 187.29 5.82 17.37 210.06 0.77 12.20 195.17

[JSZ+22] 2.29 8.50 516.04 5.33 27.00 736.30 3.59 70.37 1341.55
Our PSU♦ 0.52 7.27 114.44 1.70 10.56 143.29 0.69 10.61 169.37
Our PSU▼ 0.57 8.04 128.20 1.76 10.92 148.15 0.42 6.61 105.23
Our PSU⋆ 0.30 3.55 55.48 1.19 6.38 74.96 0.41 6.48 103.31

compared to the SOTA: first achieves strict linear complexity
time speeds up 2.4-17×, # communication reduces 2×

41 / 52

Private-ID: Performance and Comparison

Private-ID
Running time (ms) Comm. (MB)

LAN WAN total
212 216 220 212 216 220 212 216 220

[GMR+21] 1.65 11.023 158.76 13.82 43.00 385.12 4.43 76.57 1293
[BKM+20]⋆ 2.21 37.56 671.75 7.98 46.97 710.94 1.00 15.97 226.70

Our Private-ID♦ 0.55 7.28 115.63 5.34 14.83 163.43 3.12 16.91 237.55
Our Private-ID▼ 0.65 8.43 134.16 5.69 15.68 169.05 2.85 12.91 173.50
Our Private-ID⋆ 0.34 3.78 59.76 5.04 10.87 94.89 2.82 12.74 171.54

distributed OPRF: SOTA OPRF [RR22] built from VOLE and improved OKVS
PSU protocol: cwPRF-based mqRPMT

compared to the SOTA
time speeds up 2.7-4.9×, # communication is slightly larger

42 / 52

Outline

1 PSO Framework from mqRPMT

2 Construction of mqRPMT
1st Construction from Commutative Weak PRF
2nd Construction from Permuted Oblivious PRF
Connection Between mqPMT and mqRPMT

3 Comparison and Experimentation

4 Summary

43 / 52

Summary of This Work

Unified PSO framework from mqRPMT
show mqRPMT is complete for all PSO protocols
greatly reduce the deployment and maintaining costs of PSO

Generic construction of mqRPMT
cwPRF: demonstrate that DDH assumption is truly a golden goose
permuted OPRF: make the concept of OPRF more useful; somewhat explain
inefficiency of PSU/PCSI
mqRPMT∗ from Sigma-mqPMT: an initial step towards the connection to
mqPMT

Efficient implementation
identify expensive ECC operations in cheap disguise
find the perfect match: Curve25519

44 / 52

About Research

From [Grothendieck], I have learned not to take glory in the difficulty of a proof.

Figure: Pierre Deligne

Likewise, we do not take shame in the simplicity of our construction :-)

45 / 52

About Research

From [Grothendieck], I have learned not to take glory in the difficulty of a proof.

Figure: Pierre Deligne

Likewise, we do not take shame in the simplicity of our construction :-)

45 / 52

46 / 52

Thanks for Your Attention!
Any Questions?

47 / 52

Reference I

Prasad Buddhavarapu, Andrew Knox, Payman Mohassel, Shubho Sengupta, Erik
Taubeneck, and Vlad Vlaskin.
Private matching for compute.
2020.
https://eprint.iacr.org/2020/599.
Emiliano De Cristofaro, Paolo Gasti, and Gene Tsudik.
Fast and private computation of cardinality of set intersection and union.
In Cryptology and Network Security, 11th International Conference, CANS 2012,
volume 7712, pages 218–231. Springer, 2012.
Hao Chen, Kim Laine, and Peter Rindal.
Fast private set intersection from homomorphic encryption.
In Proceedings of the 2017 ACM SIGSAC Conference on Computer and
Communications Security, CCS 2017, pages 1243–1255. ACM, 2017.

48 / 52

https://eprint.iacr.org/2020/599

Reference II

Michael J. Freedman, Yuval Ishai, Benny Pinkas, and Omer Reingold.
Keyword search and oblivious pseudorandom functions.
In Theory of Cryptography, Second Theory of Cryptography Conference, TCC
2005, volume 3378 of Lecture Notes in Computer Science, pages 303–324.
Springer, 2005.
Siyao Guo, Pritish Kamath, Alon Rosen, and Katerina Sotiraki.
Limits on the efficiency of (ring) lwe-based non-interactive key exchange.
J. Cryptol., 35(1):1, 2022.

Gayathri Garimella, Payman Mohassel, Mike Rosulek, Saeed Sadeghian, and Jaspal
Singh.
Private set operations from oblivious switching.
In Public-Key Cryptography - PKC 2021, volume 12711 of Lecture Notes in
Computer Science, pages 591–617. Springer, 2021.

49 / 52

Reference III

Bernardo A. Huberman, Matthew K. Franklin, and Tad Hogg.
Enhancing privacy and trust in electronic communities.
In Proceedings of the First ACM Conference on Electronic Commerce (EC-99),
pages 78–86. ACM, 1999.
Mihaela Ion, Ben Kreuter, Ahmet Erhan Nergiz, Sarvar Patel, Shobhit Saxena,
Karn Seth, Mariana Raykova, David Shanahan, and Moti Yung.
On deploying secure computing: Private intersection-sum-with-cardinality.
In IEEE European Symposium on Security and Privacy, EuroS&P 2020, pages
370–389. IEEE, 2020.
Yanxue Jia, Shi-Feng Sun, Hong-Sheng Zhou, Jiajun Du, and Dawu Gu.
Shuffle-based private set union: Faster and more secure.
In USENIX 2022, 2022.

50 / 52

Reference IV

Catherine A. Meadows.
A more efficient cryptographic matchmaking protocol for use in the absence of a
continuously available third party.
In Proceedings of the 1986 IEEE Symposium on Security and Privacy, pages
134–137. IEEE Computer Society, 1986.
Benny Pinkas, Mike Rosulek, Ni Trieu, and Avishay Yanai.
Spot-light: Lightweight private set intersection from sparse OT extension.
In Advances in Cryptology - CRYPTO 2019 - 39th Annual International
Cryptology Conference, volume 11694 of Lecture Notes in Computer Science,
pages 401–431. Springer, 2019.
Srinivasan Raghuraman and Peter Rindal.
Blazing fast PSI from improved OKVS and subfield VOLE.
In ACM CCS 2022, 2022.

51 / 52

Reference V

Mike Rosulek and Ni Trieu.
Compact and malicious private set intersection for small sets.
In CCS ’21: 2021 ACM SIGSAC Conference on Computer and Communications
Security, pages 1166–1181. ACM, 2021.

52 / 52

	PSO Framework from mqRPMT
	Construction of mqRPMT
	1st Construction from Commutative Weak PRF
	2nd Construction from Permuted Oblivious PRF
	Connection Between mqPMT and mqRPMT

	Comparison and Experimentation
	Summary

