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Secure Multi-party Computation (MPC)

[Yao82]: Protocols for Secure Computations

MPC enable a group of independent data owners who do not trust each other or
any common third party

jointly compute a function that depends on all of their private inputs
without learn anything else beyond output and its own input
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Short History of MPC

General-purpose MPC (a.k.a. can compute arbitraty function) is possible!
This makes MPC extremely powerful
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Celebrated Paradigms of Generic MPC

Approach Round
Complexity

Adversarial
Behavior Party Corruption

Threshold Protocol Technique Circuits

Garbled
Circuit O(1)

Semi-honest n = 2 — Yao [Yao86] standard GC

Boolean

n ≥ 2 t ≥ n/2 BMR [BMR90] Distributed Garbling

Malicious
n = 2 — LP [LP07], LEGO [NO09] Cut-and-Choose

WRK [WRK17] IT-MAC

n ≥ 2 t ≥ n/2
CKMZ [CKMZ14] Cut-and-Choose

YWZ [YWZ20] IT-MAC

Secret
Sharing O(d)

Semi-honest n ≥ 2
t ≥ n/2 GMW [GMW87] Additive SS

Arithmetic

t < n/2 BGW [BGW88] Shamir SS

Malicious n ≥ 2

t ≥ n/2
GMW [GMW87] ZKP
SPDZ [DPSZ12] IT-MAC

t < n/2
LN [LN17] Triple Verification

CGHIKLN [CGH+18] Dual Execution
BGIN [BGIN20] Distributed ZKP

d is the depth of C, typically log |C|.
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MPC with Semi-Honest Security

Π for f(x1, . . . , xn)

Pi’s view includes
private input
random tape

incoming messages

P1(r1)

x1

output1(x1, . . . , xn)
f1(x1, . . . , xn)

Pi(ri)

xi

outputi(x1, . . . , xn)
fi(x1, . . . , xn)

Pn(rn)

xn

outputn(x1, . . . , xn)
fn(x1, . . . , xn)

. . .. . .

. . .. . .

all Pi are semi-honest (honest but curious)
Pi learns no more information other than his output and private input
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Pi learns no more information other than his output and private input

Definition 1 (Semi-honest Security)
Π securely realizes probabilistic f in the presence of semi-honest adversaries if there
exists a PPT simulator Sim such that for all inputs x1, . . . , xn and all i ∈ [n]:
(ViewPi(x1, . . . , xn), output(x1, . . . , xn)) ≈c,s (Sim(i, xi, fi(x1, . . . , xn)), f(x1, . . . , xn))
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Short History of MPC

MPC was primarily of only theoretical interest for the first twenty years.
After 2000s, algorithmic improvements and computing costs reached a point
where generic MPC is practical for real-world applications.

But, generic MPC is still relatively heavy and thus not very fast!

One important sub-area of MPC focuses on specific functionalities
For specific functionalities, there maybe custom protocols that are much more
efficient than the best generic protocols.
Specific functionalities can be interesting in their own right, but also can be
natural building blocks for use in other applications.
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Oblivious Transfer

1-out-of 2 OT [Rab05] enables the receiver learns only one messages from sender,
while sender learns nothing.

OT
b

mb

(m0,m1)
receiver sender

OT is complete for MPC [Kil88].
Private-information retrieval (PIR) is weaker than OT: it only cares privacy of
receiver

OT does not belong to Minicrypt ; expensive public-key operations are unavoidable,
while real applications need a large number of OT

[IKNP03] proposed Ishai-Kilian-Nissim-Petrank OT extension: generate many OT
efficiently from O(κ) number of base OT ⇒ OTe is cheap
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Private Equality Test Protocol

PEQT [PSSZ15] enables P1 and P2 check if their ℓ-bits elements x and y are equal.

PEQT
x

b := x
?
= y

y

P1 P2

[PSSZ15] showed how to build PEQT by invoking 1-out-of-2 random OT ℓ times

OT

P1(x) P2(y)
{mi,0,mi,1}i∈[ℓ]

sample from {0, 1}σ

{yi}i∈[ℓ]

{mi,yi}i∈[ℓ]

⊕ℓ
i=1mi,yi⊕ℓ

i=1mi,xi

compare
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Oblivious Pseudorandom Functions

OPRF [FIPR05] enables server obtain a key k and client evaluate obliviously.

OPRF

PRF F : K ×D → Rserver
client

k
R←− K

xi

yi = Fk(xi)

OPRF is a powerful tool in MPC (see [CHL22] for a good survey)
many variants: batch/programmable/permuted/distributed OPRF
fast construction from OT or VOLE
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Specific Functionality: Private Set Operations (high frequency and high value)

PSO

sender receiver
X = {x1, . . . , xn2}
V = {v1, . . . , vn2}

Y = {y1, . . . , yn1}

X Y PSI = X ∩ Y

X Yf PCSI =


|X ∩ Y | cardinality

|X ∩ Y |,
∑

xi∈X∩Y vi cardinality-sum
f(X ∩ Y ) general computation

X Y PSU = X ∪ Y
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Applications of PSI

Contact discovery (when signing up an App)
X: address book in my phone
Y : App user database

Private scheduling
X: avaiable timeslots on my calendar
Y : avaiable timeslots on your calendar

Credit risk profiling
X: bank’s credit risk watchlist
Y : prospective borrowers

Password checkup
X: Google’s database of breached passwords
Y : client’s passwords
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Applications of PSI-card-sum and PSU

Ad conversion rate (widely used in Microsoft and Google)
X: users who saw the advertisement
Y : customers who bought the product

IP blacklist and vulnerability data aggregation
X: blacklist in organization A

Y : blacklist in organization B

Private DB supporting full join
X: data from table A

Y : data from table B
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SOTA of PSI

PSI has been extensively studied in the last four decades
According to the techniques

symmetric-key: OPRF-based [KKRT16, CM20, RR22]
public-key: communication-efficient DH-PSI [Mea86]

According to the scenarios
balanced setting: [KKRT16, CM20, RR22] achieves linear complexity
unbalanced setting: [CLR17, CHLR18, CMdG+21] achieves sub-linear complexity
of large set

the SOTA [RR22] s almost as efficient as insecure hash-based protocol
million size set: [0.16s, 31 Mb]

18 / 36



Naive Insecure Hash-based Protocol

P1

X = {x1, . . . , xn}

P2

Y = {y1, . . . , ym}

H(x1), . . . ,H(xn)

I wonder of P1 has item v

compute X ∪ Y by comparing
H(yi) ∈ {H(xi)}i∈[n]

INSECURE: H(X) reveal too much information ; P2 can test any v? ∈ X offline
Especially problematic if items have low entropy (e.g., phone numbers)
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Recap of Classic DH-PSI

P1

X = {x1, . . . , xn1}

P2

Y = {y1, . . . , yn2}

H(x1)
α, . . . ,H(xn1)

α

H(y1)
β , . . . ,H(yn2)

β

H(x1)
αβ , . . . ,H(xn1)

αβ

compute X ∪ Y by comparing
H(xi)

αβ ∈ {H(yi)
βα}i∈[n2]

Idea:
If xi ∈ Y , then H(xi)

αβ = H(yi)
βα for some yj ∈ Y

If xi /∈ Y , messages are independently random by modeling H as random oracle

Exercise
Prove the classic DH-PSI protocol in the semi-honest security model.
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SOTA of PSO
In sharp contrast, the study of PCSI and PSU are not satisfying.

PCSI
[HFH99, IKN+20, PSTY19] achieve linear complexity

concretely 20× slower in timing and 30× more communication than PSI
Somewhat counter-intuitive, less is harder!

PSU
[KS05, Fri07, HN10, KRTW19, JSZ+22] have superlinear complexity
[DC17] achieve linear complexity, but not strict (communication or computation
complexity additionally depends on statistical parameter λ ≈ 40)

concretely 20× slower in timing and 25× more communication than PSI
Need to fetch information belong to other parties.
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Motivation

Different approaches are used for different private set operations ; require much more
engineering effort and maintaining cost

Goal: a unified framework of PSO

There exists huge efficiency gap between PSI and other PSO protocols
Goal: efficient instantiations to close the gap1

After ≈ 40 years, DH-PSI [Mea86] is still the most easily understood and implemented
one among numerous PSI protocols. Surprisingly, no counterpart is known in the PSU
setting yet. Existing protocols are very complicated.

Goal: build DDH-based PSU protocol as simple as DH-PSI

1[GMR+21] presented a PSO framework from permuted characteristic. However, its oblivious shuffle
functionality is not necessary for PSO, and incurs superlinear complexity.
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Questions in Mind

1 Is there a central building block that enables a unified framework for PSO?
2 How to give instantiations with optimal asymptotic complexity and good concrete

efficiency?
3 Can the DDH assumption strike back with efficient PSU protocol?
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