
Sigma Protocols from Verifiable Secret Sharing
and Their Applications

Dealer
s

s1
P1

s2
P2

s3
P3

· · · sn
Pn

7 3 3 3

s

Prover Verifier
Commit

Challenge

Response

Yu Chen
Shandong University

1 / 52

Tutorial based on the following joint work

Min Zhang, Yu Chen, Chuanzhou Yao, Zhichao Wang
Sigma Protocols from Verifiable Secret Sharing and Their Applications
ASIACRYPT 2023

2 / 52

Outline

1 Background

2 Sigma Protocols from VSS-in-the-Head

3 Applications of VSS-in-the-Head

4 Summary

3 / 52

Outline

1 Background

2 Sigma Protocols from VSS-in-the-Head

3 Applications of VSS-in-the-Head

4 Summary

4 / 52

Sigma (Σ) Protocols (Cramer’s PhD Thesis)

[Cra96]: Modular Design of Secure yet Practical Cryptographic Protocols

initiate the formal study of Sigma protocols
design the first practical CCA-secure PKE in the standard model from HPS
design information-theoretic secure MPC

5 / 52

Sigma (Σ) Protocols

(x,w) ∈ R
Prover Verifiermessage a

challenge e

response z

Verify(x, a, e, z) = 0/1

Completeness: Pr[⟨P(x,w),V(x)⟩ = 1| (x,w) ∈ R] = 1

n-Special soundness: ∃ PPT Ext that given any x and any n accepting
transcripts (a, ei, zi) with distinct ei’s can extract w s.t. (x,w) ∈ R
Special honest verifier zero-knowledge (SHVZK): ∃ PPT Sim s.t. for any x
and e, Sim(x, e) ≡ ⟨P(x,w),V(x, e)⟩

6 / 52

Perhaps the Simplest ZKP Prococol: Schnorr Protocol

[Sch91]: Efficient Signature Generation by Smart Cards

Cryptography: Schnorr’s identification protocol and signature (the tale of patent)
Algorithmic information theory: and for creating an approach to the definition of
an algorithmically random sequence

7 / 52

Perhaps the Simplest ZKP Prococol: Schnorr Protocol

x = gw

Prover Verifier
t

R←− Zp

a = gt
e

R←− Zp

z = t+ e× w
gz? = a · xe

a

e

z

Completeness: gz = gt+e×w = gt · gw×e = a · xe

2-Special soundness: Ext(x, (a, e1, z1), (a, e2, z2))→ w = (z1 − z2)/(e1 − e2)

SHVZK: Sim(x, e)→ (a, e, z): pick z
R←− Zp and set a = gz · x−e

8 / 52

Attractive Properties of Sigma Protocols
Efficient for algebraic statements

Schnorr protocol [Sch91]: x = gw

Okamoto protocol [Oka92]: x = gwhr

Guillou-Quisquater (GQ) protocol [GQ88]: x = we mod N

Can be easily combined to prove compound statements, such as AND/OR
Provide a simple way to establish proof-of-knowledge property
Fiat-Shamir heuristic [FS86] helps to remove interaction: SHVZK ; Full ZK
Enable numerous real-world applications

Identification protocols (Ring) Signature schemes

Anonymous credentials Privacy-preserving cryptocurrency

9 / 52

Attractive Properties of Sigma Protocols
Efficient for algebraic statements

Schnorr protocol [Sch91]: x = gw

Okamoto protocol [Oka92]: x = gwhr

Guillou-Quisquater (GQ) protocol [GQ88]: x = we mod N

Can be easily combined to prove compound statements, such as AND/OR
Provide a simple way to establish proof-of-knowledge property
Fiat-Shamir heuristic [FS86] helps to remove interaction: SHVZK ; Full ZK
Enable numerous real-world applications

Identification protocols (Ring) Signature schemes

Anonymous credentials Privacy-preserving cryptocurrency

9 / 52

Research on Sigma Protocols

Classic Σ protocols

Schnorr [Sch91]
Okamoto [Oka92]
GQ [GQ88]

Improve efficiency

Batch-Schnorr [GLSY04]

Enrich functionality

Commitments to bits [Bou00, BCC+15]
k-out-of-n proofs [CDS94, GK15, ACF21]
Lattice-based problems [YAZ+19, BLS19, LNP22]

ingenious

but hand-crafted

Schnorr’s protocol is simple? But, how did Schnorr figure it out?
Whether there exists a common design principal of Sigma protocols?

10 / 52

Research on Sigma Protocols

Classic Σ protocols

Schnorr [Sch91]
Okamoto [Oka92]
GQ [GQ88]

Improve efficiency

Batch-Schnorr [GLSY04]

Enrich functionality

Commitments to bits [Bou00, BCC+15]
k-out-of-n proofs [CDS94, GK15, ACF21]
Lattice-based problems [YAZ+19, BLS19, LNP22]

ingenious

but hand-crafted

Schnorr’s protocol is simple? But, how did Schnorr figure it out?
Whether there exists a common design principal of Sigma protocols?

10 / 52

Research on Sigma Protocols

Classic Σ protocols

Schnorr [Sch91]
Okamoto [Oka92]
GQ [GQ88]

Improve efficiency

Batch-Schnorr [GLSY04]

Enrich functionality

Commitments to bits [Bou00, BCC+15]
k-out-of-n proofs [CDS94, GK15, ACF21]
Lattice-based problems [YAZ+19, BLS19, LNP22]

ingenious

but hand-crafted

Schnorr’s protocol is simple? But, how did Schnorr figure it out?
Whether there exists a common design principal of Sigma protocols?

10 / 52

Maurer’s Framework

[Mau15]: Zero-knowledge proofs of knowledge for group homomorphisms

x = f(w)

(G1,+), (G2, ·), homomorphism f : G1 → G2

f(w1 + w2) = f(w1) · f(w2)Prover Verifier

t
R←− H1

a = f(t)
e

R←− C ⊂ Z

z = t+ e× w
f(z)? = a · xe

a

e

z

11 / 52

Maurer’s Framework
Pros: unifies many protocols, including Schnorr [Sch91], GQ [GQ88], Okamoto [Oka92]
Cons: pattern is fixed ⇝ cannot to explain some simple variants of classic protocols

The framework is superficial and fails to capture the essence

x = gw(f(w) = gw)

Prover Verifier

t
R←− Zp

a = g−t

a = gt
e

R←− Zp

z = −t× e+ w

z = t+ w × e
gz? = ae · x

a

e

z

Figure: A variant of [Sch91]
12 / 52

Motivation

The machinery of Sigma protocols is still unclear.
Is there a more generic framework of Sigma protocols?

13 / 52

Outline

1 Background

2 Sigma Protocols from VSS-in-the-Head

3 Applications of VSS-in-the-Head

4 Summary

14 / 52

MPC-in-the-head Revisit (STOC 2007: Ishai-Kushilevitz-Ostrovsky-Sahai)

[IKOS07]: Zero-knowledge from secure multiparty computation

C(w) = yMPC-in-the-Head

Prover Verifier

1. Share w : w = w1 ⊕ · · · ⊕ wn

2. Run MPC protocol ΠC :
P1 (w1)

P2 (w2)

P3 (w3)P4 (w4)

Pn (wn)
ΠC

Pi : wi||viewi

3. Commit to the views:

c1

w1||view1

c2

w2||view2

· · · cn

wn||viewn

c1, . . . , cn

I ⊂ [n]

{wi||viewi}i∈I
3accept iff:

{ci}i∈I opened correctly
output=1 & consistent

15 / 52

MPC-in-the-head Revisit (STOC 2007: Ishai-Kushilevitz-Ostrovsky-Sahai)

[IKOS07]: Zero-knowledge from secure multiparty computation

C(w) = yMPC-in-the-Head

Prover Verifier

1. Share w : w = w1 ⊕ · · · ⊕ wn

2. Run MPC protocol ΠC :
P1 (w1)

P2 (w2)

P3 (w3)P4 (w4)

Pn (wn)
ΠC

Pi : wi||viewi

3. Commit to the views:

c1

w1||view1

c2

w2||view2

· · · cn

wn||viewn

c1, . . . , cn

I ⊂ [n]

{wi||viewi}i∈I
3accept iff:

{ci}i∈I opened correctly
output=1 & consistent

15 / 52

MPC-in-the-head Revisit (STOC 2007: Ishai-Kushilevitz-Ostrovsky-Sahai)

[IKOS07]: Zero-knowledge from secure multiparty computation

C(w) = yMPC-in-the-Head

Prover Verifier

1. Share w : w = w1 ⊕ · · · ⊕ wn

2. Run MPC protocol ΠC :
P1 (w1)

P2 (w2)

P3 (w3)P4 (w4)

Pn (wn)
ΠC

Pi : wi||viewi

3. Commit to the views:

c1

w1||view1

c2

w2||view2

· · · cn

wn||viewn

c1, . . . , cn

I ⊂ [n]

{wi||viewi}i∈I
3accept iff:

{ci}i∈I opened correctly
output=1 & consistent

15 / 52

MPC-in-the-head Revisit (STOC 2007: Ishai-Kushilevitz-Ostrovsky-Sahai)

[IKOS07]: Zero-knowledge from secure multiparty computation

C(w) = yMPC-in-the-Head

Prover Verifier

1. Share w : w = w1 ⊕ · · · ⊕ wn

2. Run MPC protocol ΠC :
P1 (w1)

P2 (w2)

P3 (w3)P4 (w4)

Pn (wn)
ΠC

Pi : wi||viewi

3. Commit to the views:

c1

w1||view1

c2

w2||view2

· · · cn

wn||viewn

c1, . . . , cn

I ⊂ [n]

{wi||viewi}i∈I
3accept iff:

{ci}i∈I opened correctly
output=1 & consistent

15 / 52

MPC-in-the-head Revisit (STOC 2007: Ishai-Kushilevitz-Ostrovsky-Sahai)

[IKOS07]: Zero-knowledge from secure multiparty computation

C(w) = yMPC-in-the-Head

Prover Verifier

1. Share w : w = w1 ⊕ · · · ⊕ wn

2. Run MPC protocol ΠC :
P1 (w1)

P2 (w2)

P3 (w3)P4 (w4)

Pn (wn)
ΠC

Pi : wi||viewi

3. Commit to the views:

c1

w1||view1

c2

w2||view2

· · · cn

wn||viewn

c1, . . . , cn

I ⊂ [n]

{wi||viewi}i∈I
3accept iff:

{ci}i∈I opened correctly
output=1 & consistent

15 / 52

MPC-in-the-head Revisit (STOC 2007: Ishai-Kushilevitz-Ostrovsky-Sahai)

[IKOS07]: Zero-knowledge from secure multiparty computation

C(w) = yMPC-in-the-Head

Prover Verifier

1. Share w : w = w1 ⊕ · · · ⊕ wn

2. Run MPC protocol ΠC :
P1 (w1)

P2 (w2)

P3 (w3)P4 (w4)

Pn (wn)
ΠC

Pi : wi||viewi

3. Commit to the views:

c1

w1||view1

c2

w2||view2

· · · cn

wn||viewn

c1, . . . , cn

I ⊂ [n]

{wi||viewi}i∈I
3accept iff:

{ci}i∈I opened correctly
output=1 & consistent

15 / 52

MPC-in-the-head Revisit (STOC 2007: Ishai-Kushilevitz-Ostrovsky-Sahai)

[IKOS07]: Zero-knowledge from secure multiparty computation

C(w) = yMPC-in-the-Head

Prover Verifier

1. Share w : w = w1 ⊕ · · · ⊕ wn

2. Run MPC protocol ΠC :
P1 (w1)

P2 (w2)

P3 (w3)P4 (w4)

Pn (wn)
ΠC

Pi : wi||viewi

3. Commit to the views:

c1

w1||view1

c2

w2||view2

· · · cn

wn||viewn

c1, . . . , cn

I ⊂ [n]

{wi||viewi}i∈I

3accept iff:
{ci}i∈I opened correctly
output=1 & consistent

15 / 52

MPC-in-the-head Revisit (STOC 2007: Ishai-Kushilevitz-Ostrovsky-Sahai)

[IKOS07]: Zero-knowledge from secure multiparty computation

C(w) = yMPC-in-the-Head

Prover Verifier

1. Share w : w = w1 ⊕ · · · ⊕ wn

2. Run MPC protocol ΠC :
P1 (w1)

P2 (w2)

P3 (w3)P4 (w4)

Pn (wn)
ΠC

Pi : wi||viewi

3. Commit to the views:

c1

w1||view1

c2

w2||view2

· · · cn

wn||viewn

c1, . . . , cn

I ⊂ [n]

{wi||viewi}i∈I
3accept iff:

{ci}i∈I opened correctly
output=1 & consistent

15 / 52

MPC-in-the-head Revisit

MPC-in-the-head is a Σ-pattern protocol for arithmetic statements!

Algebraic statements are arguably simpler than arithmetic statements.
When scaling down to algebraic statements, we may start from a lite
machinery than MPC — Verifiable Secret Sharing (VSS)

16 / 52

Non-Interactive VSS

[Fel87]: A Practical Scheme for Non-interactive Verifiable Secret Sharing

Dealer
wc Encrypt

Share
w1

P1

w2

P2

w3

P3

· · · wn

Pn
7 3 3 3

w

Setup(1λ)→ pp

number of participants n

privacy threshold tp

fault-tolerance threshold tf

Encrypt(w)→ c

Share(w)→ (w1, . . . , wn)

Check(i, wi, c)→ 0/1

Recover(I, {wi}i∈I)→ w

Sharing
Phase

Reconstruct
Phase

Acceptance: valid shares wi ⇒ Check(i, wi, c) = 1
tp-Privacy: # [shares] ≤ tp ⇒ leak nothing about w
Consistency: # [valid shares] ≥ tf ⇒ unique w and recover w

17 / 52

Blind Spot: The Darkest Place Is Under The Candlestick

Over roughly 40 years, there is no well-established yet handy-to-use definition for
non-interactive VSS.

In cryptography, definition is of uttermost importance.

18 / 52

A Refined Definition of Non-Interactive VSS

Dealer
w, rc Com

Share∗

v1
P1

v2
P2

v3
P3

· · · vn
Pn

aut

7 3 3 3

w, r

Setup(1λ)→ pp
include (n, tp, tf)

Share(w)→ (c, (vi)i∈[n], aut)

Com(w; r)→ c (r could be empty)
Share∗(w, r)→ ((vi)i∈[n], aut)
aut: authentication information
(a commitment to the sharing method)

Check(i, vi, c, aut)→ 0/1

Recover(I, (vi)i∈I)→ (w, r)

Acceptance: valid shares wi ⇒ Check(i, vi, c, aut) = 1

tp-Privacy: # [shares] ≤ tp ⇒ leak nothing about w other than c

tf -Correctness: #[valid shares] ≥ tf ⇒ recover (w, r) ∧ Com(w; r) = c
19 / 52

A Metaphor of Authenticated Information

aut could right be interpreted as a commitment of sharing method

20 / 52

Dissection of Share∗

Conventionally, sharing algorithm outputs all shares (v1, . . . , vn) in one shot, where n
is the maximum number of possible participants.
Such syntax is fine when n is poly in λ. But, it is problematic when n is super-poly in
λ. To fix this issue, we further dissect Share∗

ShareinMind(s, r): output compact description of sharing method sharedesc and
the associated authentication information, both sizes are poly-bounded.
Distribute(s, r, sharedesc, i): generate vi for Pi on-the-fly.

Example 1
Shamir’s Secret-Sharing via Polynomial Interpolation

long sharedesc: v1, . . . , vn

compact sharedesc: a1, . . . , at

21 / 52

Differences in Definition: Syntax

1 In our definition the secret s is committed rather than being encrypted
Make our definition more general

2 In Feldman’s definition Share only outputs the shares, while in our definition
Share additionally outputs authentication information aut

aut is crucial for participants to check the validity of their shares

3 In Feldman’s definition Recover only outputs the secret s, while in our definition
Recover output the opening of a commitment, i.e., the secret s and the
randomness r (if there is any).

This modification is crucial for our Sigma’s framework.

22 / 52

Differences in Definition: Security

1 For correctness, our definition does not stipulate that the secrets recovered by
different groups of participants are consistent as in Feldman’s definition. Instead,
it requires that the recovered secrets and randomness (if there is any) must be
valid opening of c.

This requirement is in fact has been met by many existing VSS schemes (such as the
Feldman’s [Fel87] and Pedersen’s VSS schemes [Ped91]), but it has never been
formally defined.

2 For privacy, our definition is simulation-based rather than a game-based one as in
Feldman’s definition.

Such adoption aligns our definition with ZKP and MPC. In particular, the simulator
Sim is given c as an auxiliary input, allowing the use of commitment schemes
satisfying merely one-way hiding property.

23 / 52

Sigma Protocols from VSS
To prove knowledge of opening x = Com(w; r), we start from a (n, tp, tf)-VSS w.r.t.
the same Com

x = Com(w; r)

VSS-in-the-Head

Prover Verifier
Dealer
w, rx Com

Share∗

aut v1
P1

v2
P2

v3
P3

· · · vn
Pn

aut

I
R←− [n]tp

{vi}i∈I
3accept iff:

Check(i, vi, x, aut) = 1

Completeness ⇐ VSS Acceptance
Special soundness ⇐ VSS tf -Correctness
SHVZK ⇐ VSS tp-Privacy

24 / 52

Sigma Protocols from VSS
To prove knowledge of opening x = Com(w; r), we start from a (n, tp, tf)-VSS w.r.t.
the same Com

x = Com(w; r)

VSS-in-the-Head

Prover Verifier
Dealer
w, rx Com

Share∗

aut v1
P1

v2
P2

v3
P3

· · · vn
Pn

aut

I
R←− [n]tp

{vi}i∈I

3accept iff:
Check(i, vi, x, aut) = 1

Completeness ⇐ VSS Acceptance
Special soundness ⇐ VSS tf -Correctness
SHVZK ⇐ VSS tp-Privacy

24 / 52

Sigma Protocols from VSS
To prove knowledge of opening x = Com(w; r), we start from a (n, tp, tf)-VSS w.r.t.
the same Com

x = Com(w; r)

VSS-in-the-Head

Prover Verifier
Dealer
w, rx Com

Share∗

aut v1
P1

v2
P2

v3
P3

· · · vn
Pn

aut

I
R←− [n]tp

{vi}i∈I
3accept iff:

Check(i, vi, x, aut) = 1

Completeness ⇐ VSS Acceptance
Special soundness ⇐ VSS tf -Correctness
SHVZK ⇐ VSS tp-Privacy

24 / 52

Sigma Protocols from VSS
To prove knowledge of opening x = Com(w; r), we start from a (n, tp, tf)-VSS w.r.t.
the same Com

x = Com(w; r)

VSS-in-the-Head

Prover Verifier
Dealer
w, rx Com

Share∗

aut v1
P1

v2
P2

v3
P3

· · · vn
Pn

aut

I
R←− [n]tp

{vi}i∈I
3accept iff:

Check(i, vi, x, aut) = 1

Completeness ⇐ VSS Acceptance
Special soundness ⇐ VSS tf -Correctness
SHVZK ⇐ VSS tp-Privacy

24 / 52

Instantiation I: The Schnorr Protocol

Feldman’s VSS scheme [Fel87]
#[participants] = n, privacy threshold tp = 1, fault-tolerance threshold tf = 2

x = gw (r = ⊥)VSS-in-the-Head

Prover Verifierw,⊥
Dealer

x gw

sharing method
h(i) = a+ w · i

aut
A = ga

3accept iff:
gvi = A · xi

Set n = p ⇒ Schnorr protocol [Sch91]

25 / 52

Instantiation I: The Schnorr Protocol

Feldman’s VSS scheme [Fel87]
#[participants] = n, privacy threshold tp = 1, fault-tolerance threshold tf = 2

x = gw (r = ⊥)VSS-in-the-Head

Prover Verifierw,⊥
Dealer

x gw

sharing method
h(i) = a+ w · i

aut
A = ga

3accept iff:
gvi = A · xi

Set n = p ⇒ Schnorr protocol [Sch91]

25 / 52

Instantiation I: The Schnorr Protocol

Feldman’s VSS scheme [Fel87]
#[participants] = n, privacy threshold tp = 1, fault-tolerance threshold tf = 2

x = gw (r = ⊥)VSS-in-the-Head

Prover Verifierw,⊥
Dealer

x gw

sharing method
h(i) = a+ w · i

aut
A = ga

A

3accept iff:
gvi = A · xi

Set n = p ⇒ Schnorr protocol [Sch91]

25 / 52

Instantiation I: The Schnorr Protocol

Feldman’s VSS scheme [Fel87]
#[participants] = n, privacy threshold tp = 1, fault-tolerance threshold tf = 2

x = gw (r = ⊥)VSS-in-the-Head

Prover Verifierw,⊥
Dealer

x gw

sharing method
h(i) = a+ w · i

aut
A = ga

A

i
R←− [n]

3accept iff:
gvi = A · xi

Set n = p ⇒ Schnorr protocol [Sch91]

25 / 52

Instantiation I: The Schnorr Protocol

Feldman’s VSS scheme [Fel87]
#[participants] = n, privacy threshold tp = 1, fault-tolerance threshold tf = 2

x = gw (r = ⊥)VSS-in-the-Head

Prover Verifierw,⊥
Dealer

x gw

sharing method
h(i) = a+ w · i

aut
A = ga

Pi: vi = h(i)

upon request

A

i
R←− [n]

3accept iff:
gvi = A · xi

Set n = p ⇒ Schnorr protocol [Sch91]

25 / 52

Instantiation I: The Schnorr Protocol

Feldman’s VSS scheme [Fel87]
#[participants] = n, privacy threshold tp = 1, fault-tolerance threshold tf = 2

x = gw (r = ⊥)VSS-in-the-Head

Prover Verifierw,⊥
Dealer

x gw

sharing method
h(i) = a+ w · i

aut
A = ga

Pi: vi = h(i)

upon request

A

i
R←− [n]

vi

3accept iff:
gvi = A · xi

Set n = p ⇒ Schnorr protocol [Sch91]

25 / 52

Instantiation I: The Schnorr Protocol

Feldman’s VSS scheme [Fel87]
#[participants] = n, privacy threshold tp = 1, fault-tolerance threshold tf = 2

x = gw (r = ⊥)VSS-in-the-Head

Prover Verifierw,⊥
Dealer

x gw

sharing method
h(i) = a+ w · i

aut
A = ga

Pi: vi = h(i)

upon request

A

i
R←− [n]

vi 3accept iff:
gvi = A · xi

Set n = p ⇒ Schnorr protocol [Sch91]

25 / 52

Instantiation I: The Schnorr Protocol

Feldman’s VSS scheme [Fel87]
#[participants] = n, privacy threshold tp = 1, fault-tolerance threshold tf = 2

x = gw (r = ⊥)VSS-in-the-Head

Prover Verifierw,⊥
Dealer

x gw

sharing method
h(i) = a+ w · i

aut
A = ga

Pi: vi = a+ w · i mod p

upon request

A

i
R←− {1, . . . , p}

vi 3accept iff:
gvi = A · xi

Set n = p ⇒ Schnorr protocol [Sch91]
25 / 52

Instantiation II: A New Sigma Protocol for DL

Additive VSS scheme
#[participants] = n, privacy threshold tp = n− 1, fault-tolerance threshold tf = n

x = gw (r = ⊥)VSS-in-the-Head

Prover Verifierw,⊥
Dealer

x gw

sharing method
w = v1 + · · ·+ vn

Pi : vi

upon request

aut

xi = gvi , i ∈ [n]

x1, . . . , xn

I
R←− [n]n−1

(vi)i∈I 3Accept iff:
x1 · · ·xn = x

gvi = xi, i ∈ [I]

Yield a new Sigma protocol for DL with 2-special soundness.

26 / 52

Instantiation II: A New Sigma Protocol for DL

Additive VSS scheme
#[participants] = n, privacy threshold tp = n− 1, fault-tolerance threshold tf = n

x = gw (r = ⊥)VSS-in-the-Head

Prover Verifierw,⊥
Dealer

x gw

sharing method
w = v1 + · · ·+ vn

Pi : vi

upon request

aut

xi = gvi , i ∈ [n]

x1, . . . , xn

I
R←− [n]n−1

(vi)i∈I 3Accept iff:
x1 · · ·xn = x

gvi = xi, i ∈ [I]

Yield a new Sigma protocol for DL with 2-special soundness.
26 / 52

Outline

1 Background

2 Sigma Protocols from VSS-in-the-Head

3 Applications of VSS-in-the-Head

4 Summary

27 / 52

Forms of Statements in Zero-knowledge Proofs (ZKPs)

Algebraic Statements
functions over some groups

⇑
Sigma (Σ) protocols

Schnorr [Sch91]
Okamoto [Oka92]
GQ [GQ88]

I know w such that
gw = x

Non-Algebraic Statements
boolean/arithmetic circuits

⇑
General-purpose ZKPs

PCP, IPCP, IOP [Kil92]
Linear PCP [IKO07]
Garbled circuit [JKO13]

I know w such that
SHA(w) = x

28 / 52

Forms of Statements in Zero-knowledge Proofs (ZKPs)

Algebraic Statements
functions over some groups

⇑
Sigma (Σ) protocols

Schnorr [Sch91]
Okamoto [Oka92]
GQ [GQ88]

I know w such that
gw = x

Non-Algebraic Statements
boolean/arithmetic circuits

⇑
General-purpose ZKPs

PCP, IPCP, IOP [Kil92]
Linear PCP [IKO07]
Garbled circuit [JKO13]

I know w such that
SHA(w) = x

28 / 52

Composite Statements

Algebraic Statements
e.g. gw1 = x

Non-Algebraic Statements
e.g. SHA(w2) = y

+

combine in arbitrary ways
e.g. w1 = w2

Composite Statements

I know w such that
gw = x ∧ SHA(w) = y

29 / 52

Composite Statements

Algebraic Statements
e.g. gw1 = x

Non-Algebraic Statements
e.g. SHA(w2) = y

+

combine in arbitrary ways
e.g. w1 = w2

Composite Statements

I know w such that
gw = x ∧ SHA(w) = y Commit-and-Prove Type:

I know w such that
Com(w) = x ∧ C(w) = y

29 / 52

ZKPs for Composite Statements

Naïve method: homogenize the form then use only Σ protocols or general-purpose
ZKPs.

circuits ⇒ algebraic constraints

+

c

a b

ga · gb = gc

[public-key ops] and # [group elements]
linear to the circuit size

algebraic constraints ⇒ circuits

gw = x

+

+ ×· · ·

size of the statements
dramatically increases 1

Both directions incur significant overhead.
1As noted by [AGM18], the circuit for computing a single exponentiation could be of thousands or millions

of gates depending on the group size.
30 / 52

ZKPs for Commit-and-Prove Type Composite Statements

A better method:

[CGM16, AGM18, CFQ19, ABC+22, BHH+19]

Com(w) = x

Sigma protocols

π1

C(w) = y

general-purpose ZKPs

π2

Take advantages of both Sigma protocols and general-purpose ZKPs

31 / 52

ZKPs for Commit-and-Prove Type Composite Statements

A better method:

[CGM16, AGM18, CFQ19, ABC+22, BHH+19]

w1 ̸= w2Com(w1) = x

Sigma protocols

π1

C(w2) = y

general-purpose ZKPs

π2

But, a malicious prover can generate π1 and π2 using w1 ̸= w2

31 / 52

ZKPs for Commit-and-Prove Type Composite Statements

A better method: [CGM16, AGM18, CFQ19, ABC+22, BHH+19]

enforce
w1 = w2

Com(w1) = x

Sigma protocols

π1

“Glue” proofs

C(w2) = y

general-purpose ZKPs

π2

Solution: Enforce the prover to generate π1 and π2 using w1 = w2 via glue proof.
glue two different worlds ; additional overheads in computation and proof size
must be tailored to align with general-purpose ZKPs ; require extra design efforts

31 / 52

Whether the seemingly indispensable “glue” proofs are necessary?

VSS-in-the-head paradigm
gives rise to a generic construction of ZKPs for composite statements without

“glue” proofs

32 / 52

Whether the seemingly indispensable “glue” proofs are necessary?

VSS-in-the-head paradigm
gives rise to a generic construction of ZKPs for composite statements without

“glue” proofs

32 / 52

Main Observation

Share the same Σ pattern & same secret sharing procedure!

reuse witness sharing procedure

⇒ Enforce the prover to use consistent witness without “glue” proofs

33 / 52

C(w) = y

MPC-in-the-Head
Prover Verifier

1. Share w:
w = w1 ⊕ · · · ⊕ wn

2. Run MPC protocol ΠC :
⇒ Pi : wi||viewi

3. Commit to the views:
c1 c2 · · · cn

c1, . . . , cn

I ⊂R [n]

{wi||viewi}i∈I

3or 7

Com(w; r) = x

VSS-in-the-Head
Prover Verifier

1. Share w :

w; r
Dealer

x Com

aut v1
P1

v2
P2

v3
P3

· · · vn
Pn

aut

I ⊂R [n]

{vi}i∈I

3or 7

Main Observation

Share the same Σ pattern & same secret sharing procedure!

reuse witness sharing procedure

⇒ Enforce the prover to use consistent witness without “glue” proofs
33 / 52

C(w) = y

MPC-in-the-Head
Prover Verifier

1. Share w:
w = w1 ⊕ · · · ⊕ wn

2. Run MPC protocol ΠC :
⇒ Pi : wi||viewi

3. Commit to the views:
c1 c2 · · · cn

c1, . . . , cn

I ⊂R [n]

{wi||viewi}i∈I

3or 7

Com(w; r) = x

VSS-in-the-Head
Prover Verifier

1. Share w :

w; r
Dealer

x Com

aut v1
P1

v2
P2

v3
P3

· · · vn
Pn

aut

I ⊂R [n]

{vi}i∈I

3or 7

Two Main Technical Obstacles

1 The secret sharing mechanism in the MPC-in-the-head [IKOS07] sticks to
w = w1 ⊕ · · · ⊕wn, which is a special case of (n, n− 1, n)-SS scheme) ⇝ make it
incompatible with general (n, tp, tf)-VSS schemes

2 The relationship between VSS and SS is unclear
⇝ make it difficult to reuse the common part of witness sharing procedure

34 / 52

A Generalization of MPC-in-the-Head

Completeness ⇐ SS +ΠC+Commit correctness
Special soundness ⇐ ΠC consistency+SS correctness
SHVZK ⇐ SS +ΠC privacy

35 / 52

C(w) = yMPC-in-the-Head

Prover Verifier

1. Share w :
w = w1 ⊕ · · · ⊕ wn

(n, n− 1, n)-SS scheme

(w1, . . . , wn)← SS.Share(w)
(n, tp, tf)-SS scheme

2. Run MPC protocol ΠC :
⇒ Pi : wi||viewi

3. Commit to the views :
c1 c2 · · · cn

c1, . . . , cn

I ⊂R [n]

{(wi||viewi)}i∈I
3accept iff:

{ci}i∈I opened correctly
output=1 & consistent

A Generalization of MPC-in-the-Head

Completeness ⇐ SS +ΠC+Commit correctness
Special soundness ⇐ ΠC consistency+SS correctness
SHVZK ⇐ SS +ΠC privacy

35 / 52

C(w) = yMPC-in-the-Head

Prover Verifier

1. Share w :
w = w1 ⊕ · · · ⊕ wn

(n, n− 1, n)-SS scheme

(w1, . . . , wn)← SS.Share(w)
(n, tp, tf)-SS scheme

2. Run MPC protocol ΠC :
⇒ Pi : wi||viewi

3. Commit to the views :
c1 c2 · · · cn

c1, . . . , cn

I ⊂R [n]

{(wi||viewi)}i∈I
3accept iff:

{ci}i∈I opened correctly
output=1 & consistent

Separable VSS: Clear Relationship between VSS and SS

Definition 2 (Separability)
The algorithm VSS.Share∗(w, r)→ ({vi}i∈[n], aut) can be dissected as below:

{wi}i∈[n] ← SS.Share(w)
{ri}i∈[n] ← SS.Share(r)
aut← AutGen({(wi, ri)}i∈[n])

VSS.Share∗(w, r)

Generate shares vi

Generate aut

wi

ri
secret sharing scheme SS.Sharesecret sharing scheme SS.Share

align with

36 / 52

Separable VSS: Clear Relationship between VSS and SS

Definition 2 (Separability)
The algorithm VSS.Share∗(w, r)→ ({vi}i∈[n], aut) can be dissected as below:

{wi}i∈[n] ← SS.Share(w)
{ri}i∈[n] ← SS.Share(r)
aut← AutGen({(wi, ri)}i∈[n])

VSS.Share∗(w, r)

Generate shares vi

Generate aut

wi

ri
secret sharing scheme SS.Sharesecret sharing scheme SS.Share

align with

36 / 52

Separable VSS: Clear Relationship between VSS and SS

Definition 2 (Separability)
The algorithm VSS.Share∗(w, r)→ ({vi}i∈[n], aut) can be dissected as below:

{wi}i∈[n] ← SS.Share(w)
{ri}i∈[n] ← SS.Share(r)
aut← AutGen({(wi, ri)}i∈[n])

VSS.Share∗(w, r)
Generate shares vi

Generate aut

wi

ri
secret sharing scheme SS.Sharesecret sharing scheme SS.Share

align with

36 / 52

Separable VSS: Clear Relationship between VSS and SS

Definition 2 (Separability)
The algorithm VSS.Share∗(w, r)→ ({vi}i∈[n], aut) can be dissected as below:

{wi}i∈[n] ← SS.Share(w)
{ri}i∈[n] ← SS.Share(r)
aut← AutGen({(wi, ri)}i∈[n])

VSS.Share∗(w, r)
Generate shares vi

Generate aut

wi

ri

secret sharing scheme SS.Sharesecret sharing scheme SS.Share

align with

36 / 52

Separable VSS: Clear Relationship between VSS and SS

Definition 2 (Separability)
The algorithm VSS.Share∗(w, r)→ ({vi}i∈[n], aut) can be dissected as below:

{wi}i∈[n] ← SS.Share(w)
{ri}i∈[n] ← SS.Share(r)
aut← AutGen({(wi, ri)}i∈[n])

VSS.Share∗(w, r)
Generate shares vi

Generate aut

wi

ri
secret sharing scheme SS.Share

secret sharing scheme SS.Share

align with

36 / 52

Separable VSS: Clear Relationship between VSS and SS

Definition 2 (Separability)
The algorithm VSS.Share∗(w, r)→ ({vi}i∈[n], aut) can be dissected as below:

{wi}i∈[n] ← SS.Share(w)
{ri}i∈[n] ← SS.Share(r)
aut← AutGen({(wi, ri)}i∈[n])

VSS.Share∗(w, r)
Generate shares vi

Generate aut

wi

ri

secret sharing scheme SS.Share

secret sharing scheme SS.Share

align with

36 / 52

Combination of Two Worlds
Com(w) = x

Sigma protocols
VSS-in-the-head

VSS

C(w) = y

General-purpose ZKPs
MPC-in-the-head

SS
+

VSS aligns with SS

Com(w) = x ∧ C(w) = y

Sigma protocols
VSS-in-the-head

VSS

General-purpose ZKPs
MPC-in-the-head

SS

witness
sharing
reusing

enforce witness consistency
37 / 52

A Generic Construction of ZKPs for Composite Statements (commit-and-prove type)

Completeness ⇐ VSS separability+(VSS/MPC)-in-the-head completeness
Special soundness ⇐ witness sharing reusing+(VSS/MPC)-in-the-head special soundness
SHVZK ⇐ (VSS/MPC)-in-the-head SHVZK

no “glue” proofs public-coin transparent

38 / 52

Com(w; r) = x ∧ C(w) = y
(VSS+MPC)-in-the-Head

Prover Verifier

1. Share w, r using VSS.Share∗:
(w1, . . . , wn)← SS.Share(w)
(r1, . . . , rn)← SS.Share(r)
aut← AutGen({wi, ri}i∈[n])

2. Run MPC protocol ΠC :
⇒ Pi : wi||viewi

3. Commit to the views :
c1 c2 · · · cn

c1, . . . , cn, aut

I ⊂R [n]

{ wi ||viewi, ri}i∈I
Accept iff:

MPC-in-the-head check 3

VSS-in-the-head check 3

A Generic Construction of ZKPs for Composite Statements (commit-and-prove type)

Completeness ⇐ VSS separability+(VSS/MPC)-in-the-head completeness
Special soundness ⇐ witness sharing reusing+(VSS/MPC)-in-the-head special soundness
SHVZK ⇐ (VSS/MPC)-in-the-head SHVZK

no “glue” proofs public-coin transparent

38 / 52

Com(w; r) = x ∧ C(w) = y
(VSS+MPC)-in-the-Head

Prover Verifier

1. Share w, r using VSS.Share∗:
(w1, . . . , wn)← SS.Share(w)
(r1, . . . , rn)← SS.Share(r)
aut← AutGen({wi, ri}i∈[n])

2. Run MPC protocol ΠC :
⇒ Pi : wi||viewi

3. Commit to the views :
c1 c2 · · · cn

c1, . . . , cn, aut

I ⊂R [n]

{ wi ||viewi, ri}i∈I
Accept iff:

MPC-in-the-head check 3

VSS-in-the-head check 3

A Generic Construction of ZKPs for Composite Statements (commit-and-prove type)

Completeness ⇐ VSS separability+(VSS/MPC)-in-the-head completeness
Special soundness ⇐ witness sharing reusing+(VSS/MPC)-in-the-head special soundness
SHVZK ⇐ (VSS/MPC)-in-the-head SHVZK

no “glue” proofs public-coin transparent
38 / 52

Com(w; r) = x ∧ C(w) = y
(VSS+MPC)-in-the-Head

Prover Verifier

1. Share w, r using VSS.Share∗:
(w1, . . . , wn)← SS.Share(w)
(r1, . . . , rn)← SS.Share(r)
aut← AutGen({wi, ri}i∈[n])

2. Run MPC protocol ΠC :
⇒ Pi : wi||viewi

3. Commit to the views :
c1 c2 · · · cn

c1, . . . , cn, aut

I ⊂R [n]

{ wi ||viewi, ri}i∈I
Accept iff:

MPC-in-the-head check 3

VSS-in-the-head check 3

An Instantiation from Ligero++ (CCS 2020: Bhadauria et al.)

solve the open problem
left in [BHH+19]

Protocols Prover time Verifier time Proof size

[BHH+19] O((|w|+ λ) pub
O(|C| · λ) sym

O((|w|+ λ) pub
O(|C| · λ) sym O(|C|λ+ |w|)

This work O(λ) pub
O(|C| log(|C|)) sym

O((|w|+λ)2

log(|w|+λ)) pub
O(|C|) sym

O(polylog(|C|) + λ)

39 / 52

Randomized Reed-Solomon code
length of the code n

length of the message k

number of the randomness t̂

Packed Shamir’s SS scheme
number of participants n

fault-tolerance threshold tf = k

privacy threshold tp = t̂

VSS scheme
number of participants n

fault-tolerance threshold tf = k

privacy threshold tp = t̂

Step 1: Identify the SS scheme
used in Ligero++

Step 2: Construct a VSS scheme
that aligns with this SS

An Instantiation from Ligero++ (CCS 2020: Bhadauria et al.)

solve the open problem
left in [BHH+19]

Protocols Prover time Verifier time Proof size

[BHH+19] O((|w|+ λ) pub
O(|C| · λ) sym

O((|w|+ λ) pub
O(|C| · λ) sym O(|C|λ+ |w|)

This work O(λ) pub
O(|C| log(|C|)) sym

O((|w|+λ)2

log(|w|+λ)) pub
O(|C|) sym

O(polylog(|C|) + λ)

39 / 52

Randomized Reed-Solomon code
length of the code n

length of the message k

number of the randomness t̂

Packed Shamir’s SS scheme
number of participants n

fault-tolerance threshold tf = k

privacy threshold tp = t̂

VSS scheme
number of participants n

fault-tolerance threshold tf = k

privacy threshold tp = t̂

Step 1: Identify the SS scheme
used in Ligero++

Step 2: Construct a VSS scheme
that aligns with this SS

An Instantiation from Ligero++ (CCS 2020: Bhadauria et al.)

solve the open problem
left in [BHH+19]

Protocols Prover time Verifier time Proof size

[BHH+19] O((|w|+ λ) pub
O(|C| · λ) sym

O((|w|+ λ) pub
O(|C| · λ) sym O(|C|λ+ |w|)

This work O(λ) pub
O(|C| log(|C|)) sym

O((|w|+λ)2

log(|w|+λ)) pub
O(|C|) sym

O(polylog(|C|) + λ)

39 / 52

Randomized Reed-Solomon code
length of the code n

length of the message k

number of the randomness t̂

Packed Shamir’s SS scheme
number of participants n

fault-tolerance threshold tf = k

privacy threshold tp = t̂

VSS scheme
number of participants n

fault-tolerance threshold tf = k

privacy threshold tp = t̂

Step 1: Identify the SS scheme
used in Ligero++

Step 2: Construct a VSS scheme
that aligns with this SS

Outline

1 Background

2 Sigma Protocols from VSS-in-the-Head

3 Applications of VSS-in-the-Head

4 Summary

40 / 52

Summary

A framework of Sigma protocols for algebraic statements: VSS-in-the-head paradigm

Establish an unexpceted connection between VSS and Sigma protocols
Give a vivid and refined definition of VSS
Capture the essence of Sigma protocols
Neatly explain classic Sigma protocols [Sch91, GQ88, Oka92]
Give an automatic way to construct Sigma protocols

A generic ZKP construction for composite statements (commit-and-prove type)

Combine the best of two worlds without glue proofs
Give an efficient instantiation from Ligero++

41 / 52

Take Away

Secret Sharing is the common theme underlying both ZKP and MPC

42 / 52

Thanks for Your Attention!
Any Questions?

43 / 52

Reference I

Diego F. Aranha, Emil Madsen Bennedsen, Matteo Campanelli, Chaya Ganesh,
Claudio Orlandi, and Akira Takahashi.
ECLIPSE: enhanced compiling method for pedersen-committed zksnark engines.
In Public-Key Cryptography - PKC 2022 - 25th IACR International Conference on
Practice and Theory of Public-Key Cryptography, volume 13177 of Lecture Notes
in Computer Science, pages 584–614. Springer, 2022.
Thomas Attema, Ronald Cramer, and Serge Fehr.
Compressing proofs of k-out-of-n partial knowledge.
In Advances in Cryptology - CRYPTO 2021, volume 12828 of Lecture Notes in
Computer Science, pages 65–91. Springer, 2021.
Shashank Agrawal, Chaya Ganesh, and Payman Mohassel.
Non-interactive zero-knowledge proofs for composite statements.
In Advances in Cryptology - CRYPTO 2018, volume 10993 of Lecture Notes in
Computer Science, pages 643–673. Springer, 2018.

44 / 52

Reference II

Jonathan Bootle, Andrea Cerulli, Pyrros Chaidos, Essam Ghadafi, Jens Groth, and
Christophe Petit.
Short accountable ring signatures based on DDH.
In Computer Security - ESORICS 2015 - 20th European Symposium on Research
in Computer Security, volume 9326 of Lecture Notes in Computer Science, pages
243–265. Springer, 2015.
Michael Backes, Lucjan Hanzlik, Amir Herzberg, Aniket Kate, and Ivan Pryvalov.
Efficient non-interactive zero-knowledge proofs in cross-domains without trusted
setup.
In Public-Key Cryptography - PKC 2019 - 22nd IACR International Conference on
Practice and Theory of Public-Key Cryptography, volume 11442 of Lecture Notes
in Computer Science, pages 286–313. Springer, 2019.

45 / 52

Reference III

Jonathan Bootle, Vadim Lyubashevsky, and Gregor Seiler.
Algebraic techniques for short(er) exact lattice-based zero-knowledge proofs.
In Advances in Cryptology - CRYPTO 2019 - 39th Annual International
Cryptology Conference, volume 11692 of Lecture Notes in Computer Science,
pages 176–202. Springer, 2019.
Fabrice Boudot.
Efficient proofs that a committed number lies in an interval.
In Advances in Cryptology - EUROCRYPT 2000, volume 1807 of Lecture Notes in
Computer Science, pages 431–444. Springer, 2000.
Ronald Cramer, Ivan Damgård, and Berry Schoenmakers.
Proofs of partial knowledge and simplified design of witness hiding protocols.
In Advances in Cryptology - CRYPTO ’94, 14th Annual International Cryptology
Conference, volume 839 of Lecture Notes in Computer Science, pages 174–187.
Springer, 1994.

46 / 52

Reference IV

Matteo Campanelli, Dario Fiore, and Anaïs Querol.
Legosnark: Modular design and composition of succinct zero-knowledge proofs.
In Proceedings of the 2019 ACM SIGSAC Conference on Computer and
Communications Security, CCS 2019, pages 2075–2092. ACM, 2019.
Melissa Chase, Chaya Ganesh, and Payman Mohassel.
Efficient zero-knowledge proof of algebraic and non-algebraic statements with
applications to privacy preserving credentials.
In Advances in Cryptology - CRYPTO 2016 - 36th Annual International
Cryptology Conference, volume 9816 of Lecture Notes in Computer Science, pages
499–530. Springer, 2016.
Ronald Cramer.
Modular design of secure yet practical cryptographic protocols.
PhD thesis, 1996.
CWI and University of Amsterdam.

47 / 52

Reference V

Paul Feldman.
A practical scheme for non-interactive verifiable secret sharing.
In 28th Annual Symposium on Foundations of Computer Science, pages 427–437.
IEEE Computer Society, 1987.
Amos Fiat and Adi Shamir.
How to prove yourself: practical solutions to identification and signature problems.
In Advances in Cryptology - CRYPTO 1986, pages 186–194, 1986.
Jens Groth and Markulf Kohlweiss.
One-out-of-many proofs: Or how to leak a secret and spend a coin.
In Advances in Cryptology - EUROCRYPT 2015, pages 253–280, 2015.

48 / 52

Reference VI

Rosario Gennaro, Darren Leigh, Ravi Sundaram, and William S. Yerazunis.
Batching schnorr identification scheme with applications to privacy-preserving
authorization and low-bandwidth communication devices.
In Advances in Cryptology - ASIACRYPT 2004, 10th International Conference on
the Theory and Application of Cryptology and Information Security, volume 3329
of Lecture Notes in Computer Science, pages 276–292. Springer, 2004.
Louis C. Guillou and Jean-Jacques Quisquater.
A ”paradoxical” indentity-based signature scheme resulting from zero-knowledge.
In Advances in Cryptology - CRYPTO ’88, 8th Annual International Cryptology
Conference, pages 216–231, 1988.
Yuval Ishai, Eyal Kushilevitz, and Rafail Ostrovsky.
Efficient arguments without short pcps.
In 22nd Annual IEEE Conference on Computational Complexity (CCC 2007),
pages 278–291, 2007.

49 / 52

Reference VII

Yuval Ishai, Eyal Kushilevitz, Rafail Ostrovsky, and Amit Sahai.
Zero-knowledge from secure multiparty computation.
In Proceedings of the 39th Annual ACM Symposium on Theory of Computing,
STOC 2007, pages 21–30. ACM, 2007.
Marek Jawurek, Florian Kerschbaum, and Claudio Orlandi.
Zero-knowledge using garbled circuits: how to prove non-algebraic statements
efficiently.
In 2013 ACM SIGSAC Conference on Computer and Communications Security,
CCS 2013, pages 955–966. ACM, 2013.
Joe Kilian.
A note on efficient zero-knowledge proofs and arguments (extended abstract).
In Proceedings of the 24th Annual ACM Symposium on Theory of Computing,
STOC 1992, pages 723–732, 1992.

50 / 52

Reference VIII

Vadim Lyubashevsky, Ngoc Khanh Nguyen, and Maxime Plançon.
Lattice-based zero-knowledge proofs and applications: Shorter, simpler, and more
general.
In Advances in Cryptology - CRYPTO 2022 - 42nd Annual International
Cryptology Conference, volume 13508 of Lecture Notes in Computer Science,
pages 71–101. Springer, 2022.
Ueli Maurer.
Zero-knowledge proofs of knowledge for group homomorphisms.
Des. Codes Cryptogr., 77(2-3):663–676, 2015.

Tatsuaki Okamoto.
Provably secure and practical identification schemes and corresponding signature
schemes.
In Advances in Cryptology - CRYPTO 1992, volume 740, pages 31–53. Springer,
1992.

51 / 52

Reference IX

Torben P. Pedersen.
Non-interactive and information-theoretic secure verifiable secret sharing.
In Advances in Cryptology - CRYPTO 1991, pages 129–140, 1991.
Claus-Peter Schnorr.
Efficient signature generation by smart cards.
Journal of Cryptology, 4(3):161–174, 1991.

Rupeng Yang, Man Ho Au, Zhenfei Zhang, Qiuliang Xu, Zuoxia Yu, and William
Whyte.
Efficient lattice-based zero-knowledge arguments with standard soundness:
Construction and applications.
In Advances in Cryptology - CRYPTO 2019 - 39th Annual International
Cryptology Conference, volume 11692 of Lecture Notes in Computer Science,
pages 147–175. Springer, 2019.

52 / 52

	Background
	Sigma Protocols from VSS-in-the-Head
	Applications of VSS-in-the-Head
	Summary

