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Sigma (Σ) Protocols (Cramer’s PhD Thesis)

[Cra96]: Modular Design of Secure yet Practical Cryptographic Protocols

initiate the formal study of Sigma protocols
design the first practical CCA-secure PKE in the standard model from HPS
design information-theoretic secure MPC
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Sigma (Σ) Protocols

(x,w) ∈ R
Prover Verifiermessage a

challenge e

response z

Verify(x, a, e, z) = 0/1

Completeness: Pr[⟨P(x,w),V(x)⟩ = 1| (x,w) ∈ R] = 1

n-Special soundness: ∃ PPT Ext that given any x and any n accepting
transcripts (a, ei, zi) with distinct ei’s can extract w s.t. (x,w) ∈ R
Special honest verifier zero-knowledge (SHVZK): ∃ PPT Sim s.t. for any x
and e, Sim(x, e) ≡ ⟨P(x,w),V(x, e)⟩
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Perhaps the Simplest ZKP Prococol: Schnorr Protocol

[Sch91]: Efficient Signature Generation by Smart Cards

Cryptography: Schnorr’s identification protocol and signature (the tale of patent)
Algorithmic information theory: and for creating an approach to the definition of
an algorithmically random sequence
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Perhaps the Simplest ZKP Prococol: Schnorr Protocol

x = gw

Prover Verifier
t

R←− Zp

a = gt
e

R←− Zp

z = t+ e× w
gz? = a · xe

a

e

z

Completeness: gz = gt+e×w = gt · gw×e = a · xe

2-Special soundness: Ext(x, (a, e1, z1), (a, e2, z2))→ w = (z1 − z2)/(e1 − e2)

SHVZK: Sim(x, e)→ (a, e, z): pick z
R←− Zp and set a = gz · x−e

8 / 52



Attractive Properties of Sigma Protocols
Efficient for algebraic statements

Schnorr protocol [Sch91]: x = gw

Okamoto protocol [Oka92]: x = gwhr

Guillou-Quisquater (GQ) protocol [GQ88]: x = we mod N

Can be easily combined to prove compound statements, such as AND/OR
Provide a simple way to establish proof-of-knowledge property
Fiat-Shamir heuristic [FS86] helps to remove interaction: SHVZK ; Full ZK
Enable numerous real-world applications

Identification protocols (Ring) Signature schemes

Anonymous credentials Privacy-preserving cryptocurrency
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Research on Sigma Protocols

Classic Σ protocols

Schnorr [Sch91]
Okamoto [Oka92]
GQ [GQ88]

Improve efficiency

Batch-Schnorr [GLSY04]

Enrich functionality

Commitments to bits [Bou00, BCC+15]
k-out-of-n proofs [CDS94, GK15, ACF21]
Lattice-based problems [YAZ+19, BLS19, LNP22]

ingenious

but hand-crafted

Schnorr’s protocol is simple? But, how did Schnorr figure it out?
Whether there exists a common design principal of Sigma protocols?
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Maurer’s Framework

[Mau15]: Zero-knowledge proofs of knowledge for group homomorphisms

x = f(w)

(G1,+), (G2, ·), homomorphism f : G1 → G2

f(w1 + w2) = f(w1) · f(w2)Prover Verifier

t
R←− H1

a = f(t)
e

R←− C ⊂ Z

z = t+ e× w
f(z)? = a · xe

a

e

z
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Maurer’s Framework
Pros: unifies many protocols, including Schnorr [Sch91], GQ [GQ88], Okamoto [Oka92]
Cons: pattern is fixed ⇝ cannot to explain some simple variants of classic protocols

The framework is superficial and fails to capture the essence

x = gw(f(w) = gw)

Prover Verifier

t
R←− Zp

a = g−t

a = gt
e

R←− Zp

z = −t× e+ w

z = t+ w × e
gz? = ae · x

a

e

z

Figure: A variant of [Sch91]
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Motivation

The machinery of Sigma protocols is still unclear.
Is there a more generic framework of Sigma protocols?
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MPC-in-the-head Revisit (STOC 2007: Ishai-Kushilevitz-Ostrovsky-Sahai)

[IKOS07]: Zero-knowledge from secure multiparty computation

C(w) = yMPC-in-the-Head

Prover Verifier

1. Share w : w = w1 ⊕ · · · ⊕ wn

2. Run MPC protocol ΠC :
P1 (w1)

P2 (w2)

P3 (w3)P4 (w4)

Pn (wn)
ΠC

Pi : wi||viewi

3. Commit to the views:

c1

w1||view1

c2

w2||view2

· · · cn

wn||viewn

c1, . . . , cn

I ⊂ [n]

{wi||viewi}i∈I
3accept iff:

{ci}i∈I opened correctly
output=1 & consistent
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MPC-in-the-head Revisit

MPC-in-the-head is a Σ-pattern protocol for arithmetic statements!

Algebraic statements are arguably simpler than arithmetic statements.
When scaling down to algebraic statements, we may start from a lite
machinery than MPC — Verifiable Secret Sharing (VSS)
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Non-Interactive VSS

[Fel87]: A Practical Scheme for Non-interactive Verifiable Secret Sharing

Dealer
wc Encrypt

Share
w1

P1

w2

P2

w3

P3

· · · wn

Pn
7 3 3 3

w

Setup(1λ)→ pp

number of participants n

privacy threshold tp

fault-tolerance threshold tf

Encrypt(w)→ c

Share(w)→ (w1, . . . , wn)

Check(i, wi, c)→ 0/1

Recover(I, {wi}i∈I)→ w

Sharing
Phase

Reconstruct
Phase

Acceptance: valid shares wi ⇒ Check(i, wi, c) = 1
tp-Privacy: # [shares] ≤ tp ⇒ leak nothing about w
Consistency: # [valid shares] ≥ tf ⇒ unique w and recover w
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Blind Spot: The Darkest Place Is Under The Candlestick

Over roughly 40 years, there is no well-established yet handy-to-use definition for
non-interactive VSS.

In cryptography, definition is of uttermost importance.
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A Refined Definition of Non-Interactive VSS

Dealer
w, rc Com

Share∗

v1
P1

v2
P2

v3
P3

· · · vn
Pn

aut

7 3 3 3

w, r

Setup(1λ)→ pp
include (n, tp, tf )

Share(w)→ (c, (vi)i∈[n], aut)

Com(w; r)→ c (r could be empty)
Share∗(w, r)→ ((vi)i∈[n], aut)
aut: authentication information
(a commitment to the sharing method)

Check(i, vi, c, aut)→ 0/1

Recover(I, (vi)i∈I)→ (w, r)

Acceptance: valid shares wi ⇒ Check(i, vi, c, aut) = 1

tp-Privacy: # [shares] ≤ tp ⇒ leak nothing about w other than c

tf -Correctness: #[valid shares] ≥ tf ⇒ recover (w, r) ∧ Com(w; r) = c
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A Metaphor of Authenticated Information

aut could right be interpreted as a commitment of sharing method
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Dissection of Share∗

Conventionally, sharing algorithm outputs all shares (v1, . . . , vn) in one shot, where n
is the maximum number of possible participants.
Such syntax is fine when n is poly in λ. But, it is problematic when n is super-poly in
λ. To fix this issue, we further dissect Share∗

ShareinMind(s, r): output compact description of sharing method sharedesc and
the associated authentication information, both sizes are poly-bounded.
Distribute(s, r, sharedesc, i): generate vi for Pi on-the-fly.

Example 1
Shamir’s Secret-Sharing via Polynomial Interpolation

long sharedesc: v1, . . . , vn

compact sharedesc: a1, . . . , at

21 / 52



Differences in Definition: Syntax

1 In our definition the secret s is committed rather than being encrypted
Make our definition more general

2 In Feldman’s definition Share only outputs the shares, while in our definition
Share additionally outputs authentication information aut

aut is crucial for participants to check the validity of their shares

3 In Feldman’s definition Recover only outputs the secret s, while in our definition
Recover output the opening of a commitment, i.e., the secret s and the
randomness r (if there is any).

This modification is crucial for our Sigma’s framework.
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Differences in Definition: Security

1 For correctness, our definition does not stipulate that the secrets recovered by
different groups of participants are consistent as in Feldman’s definition. Instead,
it requires that the recovered secrets and randomness (if there is any) must be
valid opening of c.

This requirement is in fact has been met by many existing VSS schemes (such as the
Feldman’s [Fel87] and Pedersen’s VSS schemes [Ped91]), but it has never been
formally defined.

2 For privacy, our definition is simulation-based rather than a game-based one as in
Feldman’s definition.

Such adoption aligns our definition with ZKP and MPC. In particular, the simulator
Sim is given c as an auxiliary input, allowing the use of commitment schemes
satisfying merely one-way hiding property.
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Sigma Protocols from VSS
To prove knowledge of opening x = Com(w; r), we start from a (n, tp, tf )-VSS w.r.t.
the same Com

x = Com(w; r)

VSS-in-the-Head

Prover Verifier
Dealer
w, rx Com

Share∗

aut v1
P1

v2
P2

v3
P3

· · · vn
Pn

aut

I
R←− [n]tp

{vi}i∈I
3accept iff:

Check(i, vi, x, aut) = 1

Completeness ⇐ VSS Acceptance
Special soundness ⇐ VSS tf -Correctness
SHVZK ⇐ VSS tp-Privacy
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Instantiation I: The Schnorr Protocol

Feldman’s VSS scheme [Fel87]
#[participants] = n, privacy threshold tp = 1, fault-tolerance threshold tf = 2

x = gw (r = ⊥)VSS-in-the-Head

Prover Verifierw,⊥
Dealer

x gw

sharing method
h(i) = a+ w · i

aut
A = ga

3accept iff:
gvi = A · xi

Set n = p ⇒ Schnorr protocol [Sch91]
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Instantiation II: A New Sigma Protocol for DL

Additive VSS scheme
#[participants] = n, privacy threshold tp = n− 1, fault-tolerance threshold tf = n

x = gw (r = ⊥)VSS-in-the-Head

Prover Verifierw,⊥
Dealer

x gw

sharing method
w = v1 + · · ·+ vn

Pi : vi

upon request

aut

xi = gvi , i ∈ [n]

x1, . . . , xn

I
R←− [n]n−1

(vi)i∈I 3Accept iff:
x1 · · ·xn = x

gvi = xi, i ∈ [I]

Yield a new Sigma protocol for DL with 2-special soundness.
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Forms of Statements in Zero-knowledge Proofs (ZKPs)

Algebraic Statements
functions over some groups

⇑
Sigma (Σ) protocols

Schnorr [Sch91]
Okamoto [Oka92]
GQ [GQ88]

I know w such that
gw = x

Non-Algebraic Statements
boolean/arithmetic circuits

⇑
General-purpose ZKPs

PCP, IPCP, IOP [Kil92]
Linear PCP [IKO07]
Garbled circuit [JKO13]

I know w such that
SHA(w) = x
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Composite Statements

Algebraic Statements
e.g. gw1 = x

Non-Algebraic Statements
e.g. SHA(w2) = y

+

combine in arbitrary ways
e.g. w1 = w2

Composite Statements

I know w such that
gw = x ∧ SHA(w) = y
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ZKPs for Composite Statements

Naïve method: homogenize the form then use only Σ protocols or general-purpose
ZKPs.

circuits ⇒ algebraic constraints

+

c

a b

ga · gb = gc

# [public-key ops] and # [group elements]
linear to the circuit size

algebraic constraints ⇒ circuits

gw = x

+

+ ×· · ·

size of the statements
dramatically increases 1

Both directions incur significant overhead.
1As noted by [AGM18], the circuit for computing a single exponentiation could be of thousands or millions

of gates depending on the group size.
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ZKPs for Commit-and-Prove Type Composite Statements

A better method:

[CGM16, AGM18, CFQ19, ABC+22, BHH+19]

Com(w) = x

Sigma protocols

π1

C(w) = y

general-purpose ZKPs

π2

Take advantages of both Sigma protocols and general-purpose ZKPs
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A better method:

[CGM16, AGM18, CFQ19, ABC+22, BHH+19]

w1 ̸= w2Com(w1) = x

Sigma protocols

π1

C(w2) = y

general-purpose ZKPs

π2

But, a malicious prover can generate π1 and π2 using w1 ̸= w2
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ZKPs for Commit-and-Prove Type Composite Statements

A better method: [CGM16, AGM18, CFQ19, ABC+22, BHH+19]

enforce
w1 = w2

Com(w1) = x

Sigma protocols

π1

“Glue” proofs

C(w2) = y

general-purpose ZKPs

π2

Solution: Enforce the prover to generate π1 and π2 using w1 = w2 via glue proof.
glue two different worlds ; additional overheads in computation and proof size
must be tailored to align with general-purpose ZKPs ; require extra design efforts
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Whether the seemingly indispensable “glue” proofs are necessary?

VSS-in-the-head paradigm
gives rise to a generic construction of ZKPs for composite statements without

“glue” proofs
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Main Observation

Share the same Σ pattern & same secret sharing procedure!

reuse witness sharing procedure

⇒ Enforce the prover to use consistent witness without “glue” proofs

33 / 52

C(w) = y

MPC-in-the-Head
Prover Verifier

1. Share w:
w = w1 ⊕ · · · ⊕ wn

2. Run MPC protocol ΠC :
⇒ Pi : wi||viewi

3. Commit to the views:
c1 c2 · · · cn

c1, . . . , cn

I ⊂R [n]

{wi||viewi}i∈I

3or 7

Com(w; r) = x

VSS-in-the-Head
Prover Verifier

1. Share w :

w; r
Dealer

x Com

aut v1
P1

v2
P2

v3
P3

· · · vn
Pn

aut

I ⊂R [n]

{vi}i∈I

3or 7
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Two Main Technical Obstacles

1 The secret sharing mechanism in the MPC-in-the-head [IKOS07] sticks to
w = w1 ⊕ · · · ⊕wn, which is a special case of (n, n− 1, n)-SS scheme) ⇝ make it
incompatible with general (n, tp, tf )-VSS schemes

2 The relationship between VSS and SS is unclear
⇝ make it difficult to reuse the common part of witness sharing procedure
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A Generalization of MPC-in-the-Head

Completeness ⇐ SS +ΠC+Commit correctness
Special soundness ⇐ ΠC consistency+SS correctness
SHVZK ⇐ SS +ΠC privacy
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C(w) = yMPC-in-the-Head

Prover Verifier

1. Share w :
w = w1 ⊕ · · · ⊕ wn

(n, n− 1, n)-SS scheme

(w1, . . . , wn)← SS.Share(w)
(n, tp, tf )-SS scheme

2. Run MPC protocol ΠC :
⇒ Pi : wi||viewi

3. Commit to the views :
c1 c2 · · · cn

c1, . . . , cn

I ⊂R [n]

{(wi||viewi)}i∈I
3accept iff:

{ci}i∈I opened correctly
output=1 & consistent
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Separable VSS: Clear Relationship between VSS and SS

Definition 2 (Separability)
The algorithm VSS.Share∗(w, r)→ ({vi}i∈[n], aut) can be dissected as below:

{wi}i∈[n] ← SS.Share(w)
{ri}i∈[n] ← SS.Share(r)
aut← AutGen({(wi, ri)}i∈[n])

VSS.Share∗(w, r)

Generate shares vi

Generate aut

wi

ri
secret sharing scheme SS.Sharesecret sharing scheme SS.Share

align with
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Combination of Two Worlds
Com(w) = x

Sigma protocols
VSS-in-the-head

VSS

C(w) = y

General-purpose ZKPs
MPC-in-the-head

SS
+

VSS aligns with SS

Com(w) = x ∧ C(w) = y

Sigma protocols
VSS-in-the-head

VSS

General-purpose ZKPs
MPC-in-the-head

SS

witness
sharing
reusing

enforce witness consistency
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A Generic Construction of ZKPs for Composite Statements (commit-and-prove type)

Completeness ⇐ VSS separability+(VSS/MPC)-in-the-head completeness
Special soundness ⇐ witness sharing reusing+(VSS/MPC)-in-the-head special soundness
SHVZK ⇐ (VSS/MPC)-in-the-head SHVZK

no “glue” proofs public-coin transparent

38 / 52

Com(w; r) = x ∧ C(w) = y
(VSS+MPC)-in-the-Head

Prover Verifier

1. Share w, r using VSS.Share∗:
(w1, . . . , wn)← SS.Share(w)
(r1, . . . , rn)← SS.Share(r)
aut← AutGen({wi, ri}i∈[n])

2. Run MPC protocol ΠC :
⇒ Pi : wi||viewi

3. Commit to the views :
c1 c2 · · · cn

c1, . . . , cn, aut

I ⊂R [n]

{ wi ||viewi, ri}i∈I
Accept iff:

MPC-in-the-head check 3

VSS-in-the-head check 3
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An Instantiation from Ligero++ (CCS 2020: Bhadauria et al.)

solve the open problem
left in [BHH+19]

Protocols Prover time Verifier time Proof size

[BHH+19] O((|w|+ λ) pub
O(|C| · λ) sym

O((|w|+ λ) pub
O(|C| · λ) sym O(|C|λ+ |w|)

This work O(λ) pub
O(|C| log(|C|)) sym

O( (|w|+λ)2

log(|w|+λ) ) pub
O(|C|) sym

O(polylog(|C|) + λ)
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Randomized Reed-Solomon code
length of the code n

length of the message k

number of the randomness t̂

Packed Shamir’s SS scheme
number of participants n

fault-tolerance threshold tf = k

privacy threshold tp = t̂

VSS scheme
number of participants n

fault-tolerance threshold tf = k

privacy threshold tp = t̂

Step 1: Identify the SS scheme
used in Ligero++

Step 2: Construct a VSS scheme
that aligns with this SS
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Summary

A framework of Sigma protocols for algebraic statements: VSS-in-the-head paradigm

Establish an unexpceted connection between VSS and Sigma protocols
Give a vivid and refined definition of VSS
Capture the essence of Sigma protocols
Neatly explain classic Sigma protocols [Sch91, GQ88, Oka92]
Give an automatic way to construct Sigma protocols

A generic ZKP construction for composite statements (commit-and-prove type)

Combine the best of two worlds without glue proofs
Give an efficient instantiation from Ligero++
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Take Away

Secret Sharing is the common theme underlying both ZKP and MPC
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Thanks for Your Attention!
Any Questions?
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