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Private Set Union
sender receiver

X Y

{x1, . . . , xn2} {y1, . . . , yn1}

PSU

X Y?

In this work, we focus on the balanced setting, i.e., n1 ≈ n2. For simplicity, we assume
n1 = n = n2 hereafter.
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Applications of PSU

PSU has found numerous applications, which include but not limit to:
information security risk assessment [LV04]
IP blacklist and vulnerability data aggregation [HLS+16]
joint graph computation [BS05]
distributed network monitoring [KS05]
building block for private DB supporting full join [KRTW19]
private-ID [GMR+21]
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Previous Work

According to the underlying techniques, existing PSU protocols can be divided into two
categories:

Public-key techniques (e.g. AHE) [KS05, Fri07, DC17]
Pros. good asympotic complexity: “almost” linear computation/communication
complexity
Cons. poor concrete efficiency: O(λ) AHE operations per set element

Symmetric-key techniques coupled with OT [KRTW19, GMR+21, JSZ+22]
Pros. (i) good concrete efficiency: running time is several orders of magnitude faster
than AHE-based protocols;
Cons. poor asympotic complexity: communication/computation complexity are
superlinear

Protocols based on symmetric-key techniques are plausibly quantum secure.
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Motivation

Can we attain the-best-of-two-worlds: designing PSU protocols with
optimal linear complexity and good concrete efficiency?
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Review of KRTW (Kolesnikov-Rosulek-Trieu-Wang) Protocol

RPMTserver client
Y

ei = 1 ⇐⇒ xi ∈ Y
xi

receiver senderY = {y1, . . . , yn} X = {x1, . . . , xn}

OT

1− ei

zi

(xi,⊥)

zi =

{
xi ei = 0
⊥ ei = 1

repeat the 1-vs-many PSU n times independently

10 / 43



Zoom In of the Sub-protocol RPMT

server Y = {y1, . . . , yn} clientX = {x1, . . . , xn}

OPRF

F : K ×D → {0, 1}ℓ

k
x

Fk(x)

s
R←− F2ℓ

indication string
of Y

P ← Interpolate{(yi, s⊕ Fk(yi))i∈[n]}
P

s∗ ← P (x)⊕ Fk(x)PEQT
s

b := s
?
= s∗

s∗

Usage of OPRF. Without OPRF masking, if xi ∈ Y client may learn s by evaluating
P (xi) ; client learns all yi ∈ Y
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Correctness and Security Analysis

Correctness. Consider the following two cases:
If x ∈ Y ⇒ s∗ = P (yi)⊕ Fk(yi) = s⊕ Fk(yi)⊕ Fk(yi) = s.

If x /∈ Y ⇒ Fk(x) is pseudorandom. Via real-or-random argument, we conclude
that for a tuple of PPT (server, client), Pr[s∗ = Fk(x)⊕ P (x) = s] ≤ 1/2ℓ in
computational sense.

x ∈ Y ⇐⇒ s = s∗

Security. Follows the semi-honest security of OPRF and PEQT.
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Complexity Analysis

OPRF and PEQT are fast cryptographic protocols
The computation bottleneck lies at polynomial interpolation of arbitrary n points

trivial algorithm using Langrange formula requires O(n2)

fast algorithm using FFT requires O(n log2 n)
The communication bottleneck lies at the representation of degree-n polynominal

O(n) field elements in F2ℓ

In sum, KRTW protocol has O(n2 log2 n) computation complexity and O(n2)
communication complexity1

1In [KRTW19], hash-to-bin technique was used to reduce complexity. However, Jia et al. [JSZ+22]
pin-pointed that the improved protocol is not secure.
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PSU from mqRPMT

mqRPMTserver client
Y

X = {x1, . . . , xn}
e⃗ = (e1, . . . , en)

receiver sender

yields PSU coupled with OT (flipping e⃗): receiver obtains X\Y

OT

1− ei
(xi,⊥)

zi
zi =

{
xi ei = 0
⊥ ei = 1
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Essence of mqRPMT

The extension from RPMT ; mqRPMT is natural.
Crux: find a batchable construction of mqRPMT achiving optimal linear
complexity
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How to Batch mqRPMT to Build Efficient mqRPMT

Root of inefficiency for KRTW protocol
1 degree-n polynominal interpolation is heavy
2 have to repeat polynominal interpolation n times, while batch the basic RPMT

protocol is not trivial:
client learns the purported indication string s∗ in clear ⇒ direct reusing P let client
be able to decide if xi ∈ Y ∧ xj ∈ Y by computing and compairing s∗ ;
compromise server’s privacy

Our idea is based on two key observations.
1st Observation. Polynomial interpolation plays the role of oblivious key-value
store.
2nd Observation. The usage of OPRF is three-fold:

server uses OPRF to derive n pseudorandom one-time pads, then encrypts the same
s∗ into n ciphertexts under these one-time pads.
client uses OPRF to decrypt a ciphertext obliviously.
OPRF infuses polynomial interpolation with randomness to ensure the correctness.
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Oblivious Key-Value Store

K × V

(x1, y1)...
(xi, yi)...
(xn, yn)

A

d1

...

dj

...

dm

DEncode y
Decode(D,x) rate n/m

1 is optimal

Correctness. For any A = {(x1, y1), . . . , (xn, yn)} and any xi ∈ {x1, . . . , xn}:
Pr[Decode(D,xi) = yi] ≥ 1− negl(λ), where D ← Encode(A).

Randomness. For any A = {(x1, y1), . . . , (xn, yn)} and any x /∈ {x1, . . . , xn}:
Decode(D,x) ≈s UV , where D ← Encode(A).

Obliviousness. For any (x01, . . . , x
0
n) ̸= (x11, . . . , x

1
n):

Encode((x01, y1), . . . , (x0n, yn)) ≈c Encode((x11, y1), . . . , (x1n, yn)), where yi
R←− V .
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OKVS Off-the-Shelf

Table: Comparison of Different OKVS

scheme rate encoding decoding randomness obliviousness
Interpolation Polynomial 1 O(n log2 n) O(logn) 7 ✓

Garbled Bloom Filter [DCW13] O(1/λ) O(λn) O(λ) ✓ ✓
Garbled Cuckoo Table [PRTY20] 0.4 O(λn) O(λ) ✓ ✓

3H-GCT [GPR+21] 0.81 O(λn) O(λ) ✓ ✓
RR22 [RR22] 0.81 O(λn) O(λ) ✓ ✓

RB-OKVS [BPSY23] 0.97 O(λn) O(λ) ✓ ✓

n is # [key-value pairs]. λ is the statistical security parameter (e.g. λ = 40).

Drop-in replacement of polynomial interpolation with better OKVS will improve
efficiency immediately.
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How to Batch?

Rough idea to bypass the root of efficiency
switch the role of decryption: let server decrypt ciphertexts then match the results
with the indication string.

The idea is problematic since it is insecure even against a semi-honest server.
server records the correspondence between yi and OKVS(yi) ; server learns
client’s private input x by simple look-up when x ∈ Y , rather than merely the fact
that x ∈ Y .

We overcome this difficulty in two steps:
1 re-factor the functionality of OPRF to encryption and oblivious decryption

functionality.
2 merge the oblivious decryption functionality and PEQT into a new functionality

called vector oblivious decryption-then-matching (VODM) functionality.
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Encryption Scheme

SKE/PKE scheme consists of three PPT algorithms:
KeyGen(1κ): output a secret key k or a keypair (pk, sk).
Encrypt(pk/k,m): output a ciphertext c of m.
Decrypt(sk/k, c): decrypt c to recover m.

Single-message multi-ciphertext pseudorandomness. For any PPT A = (A1,A2),
its advantage is negl(κ).

AdvA(κ) = Pr

β = β′ :

k/(pk, sk)← KeyGen(1κ);
(m, state)← A1(κ/pk);
β ← {0, 1};
c∗i,0 ← Encrypt(k/pk,m), c∗i,1 ← C, for i ∈ [n];

β′ ← A2(state, {c∗i,β}i∈[n])

− 1

2

Single-message multi-ciphertext pseudorandomness is a mild property satisfied by
most IND-CPA secure SKE/PKE, such as PRF-based SKE, ElGamal PKE based
on DDH and Regev’s PKE based on LWE.
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Vector Oblivious Decrypt-then-Match (VODM)

VODM w.r.t. encryption scheme (KeyGen,Encrypt,Decrypt) is defined as below:

VODM

receiver sender

c = (c1, . . . , cn) ∈ Cn
k/sk, m ∈M

e = (e1, . . . , en) ∈ {0, 1}n

ei =

{
1 if Decrypt(k/sk, ci) = m
0 if Decrypt(k/sk, ci) ̸= m
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mqRPMT from OKVS+Encryption+VODM

VODM

server client

Y = (y1, . . . , yn) X = (x1, . . . , xn)

{c∗i ← Decode(D,xi)}ni=1)
k/sk, s ∈M

e = (e1, . . . , en) ∈ {0, 1}n

k/(pk, sk)← KeyGen(1κ)
s

R←−M
{ci ← Encrypt(k/pk, s)}ni=1

D ← Encode({yi, ci}ni=1)
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Our Focus

Choose/Design appropriate primitives to realize the framework.
1 OKVS: any off-the-shelf OKVS is fine.
2 Encryption scheme: the ones satisfy single-message multi ciphertext

pseudorandomness.
3 VODM: design w.r.t. the chosen encryption scheme

We only need to foucs on step 2 and 3.
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mqRPMT from SKE and Generic 2PC

receiver sender

Y = (y1, . . . , yn) X = (x1, . . . , xn)

k ← KeyGen(1κ)
s

R←−M , {zi ← Encrypt(k, s)}ni=1

Encode((y1, z1), . . . , (yn, zn))→ D
{Decode(D,xi)→ ci}ni=1

2PC
GC or GMW

bi ← Decrypt(k, ci) ?
= s

c = (c1, . . . , cn)
k, s ∈M

e = (e1, . . . , en) ∈ {0, 1}n

SKE: choose LowMC for small circuit size
generic 2PC: choose garbled circuit or GMW
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mqRPMT from Rerandomizable PKE

receiver sender

Y = (y1, . . . , yn) X = (x1, . . . , xn)

(pk, sk)← KeyGen(1κ)
s

R←−M , {zi ← Encrypt(pk, s)}ni=1

Encode((y1, z1), . . . , (yn, zn))→ D
{Decode(D,xi)→ ci}ni=1

c′i ← ReRand(pk, ci)
mi ← Decrypt(sk, c′i)

ei := si
?
= s

ReRand(pk, c) → c′

Decrypt(sk, c′) = m = Decrypt(sk, c)
c′ ≈s Encrypt(pk,m)

c′i s.t. ei = 1 does not leak information since receiver knows s
c′i s.t. ei = 0 does leak extra information

but such leakage is not harmful for PSU since receiver eventually learns xi /∈ Y

re-randomizable PKE: exponential ElGamal, Regev’s PKE
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Retrospect of the Generic Framework

Previous two mqRPMT instantiations achieve linear complexity and enjoy good
concrete efficiency.

Can we further generalize the framework?
Can we improve the efficiency of concrete instantiations?

High level idea underlying our mqRPMT design
1 receiver creates a membership relation R for his set Y s.t. R(x) = 1 ⇐⇒ x ∈ Y .
2 receiver encrypts elements in Y w.r.t. R and sends the “encoding” of resulting

ciphertexts to the sender.
3 sender is able to retrieve the ciphertext of his elements.
4 perform oblivious decrypt-then-match

We realize the right encryption scheme needed is membership encryption (ME).
ME for set X encrypts an element x into a ciphertext, which decrypts to “1” if
x ∈ X and to “0” (intuitively).
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Membership Encryption

Definition 1 (Membership Encryption (Symmetric ME))
ME for set X consists of three PPT algorithms (with X as an implicit input):

KeyGen(1κ): outputs a key k.
Enc(k, x): on input a key k and an element x ∈ X, outputs a ciphertext c ∈ C.
For uttermost generality, the behavior of Enc on x /∈ X is unspecified.
Dec(k, c): outputs “1” indicates c is an encryption of some x ∈ X and “0” if not.

Correctness. ∀x ∈ X, Pr[Dec(k, c = Enc(k, x)) = 1] = 1, k ← KeyGen(1κ).
Consistency. ∀x /∈ X, Pr[Dec(k, c) = 0] ≥ 1− ε(κ): k ← KeyGen(1κ), c R←− C.
Multi-element pseudorandomness. ∀ distinct x1, . . . , xn ∈ X

{Enc(k, xi)}i∈[n] ≈c UCn , k ← KeyGen(1κ)

Symmetric ME naturally extends to the public-key setting:
KeyGen outputs (pk, sk), in which pk is used to encrypt and sk is used to decrypt.
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Generic Construction of ME

The essence of ME is to encrypt element’s membership relation, rather than the
element itself.

Membership relation can be created by designing a mapping H from elements to
X. Basically, there are two extreme cases of mapping.

lossy mapping: select a single indication string s as the characteristic of X, then
map all elements to s, i.e., H : xi → s.
injective mapping: select n indication strings si as the characteristic of X, then map
elements to distinct indication strings, i.e., H : xi → si.

We then present various constructions of ME by mixing encryption schemes and
membership mapping.
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ME from Probabilistic Encryption and Lossy Mapping
ME from probabilistic SKE and lossy mapping.

KeyGen(1κ): runs SKE.KeyGen(1κ)→ kske, picks s R←−M , sets H : X → s,
outputs k = (kske,H).
Enc(k, x): parses k = (kske,H), outputs c← SKE.Enc(kske,H(x)).
Dec(k, c): parses k = (kske,H), outputs ‘1’ iff SKE.Dec(kske, c) = s.

ME from probabilistic PKE and lossy mapping.
KeyGen(1κ): runs PKE.KeyGen(1κ)→ (pkpke, skske), picks s R←−M , sets
H : X → s, outputs pk = pkpke and sk = (skpke,H).
Enc(pk, x): parses pk = pkpke, outputs c← PKE.Enc(pkpke,H(x)).
Dec(sk, c): parses sk = (skpke,H), outputs ‘1’ iff PKE.Dec(skpke, c) = s.

Lemma: If SKE/PKE satisfies single-message multi-ciphertext pseudorandomness, then
the ME construction satisfies multi-element pseudorandomness with consistency error
1/|M |.
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Discussion

The above ME constructions are exactly the backbones of two instantiations of
mqRPMT.
ME requires multi-element pseudorandomness

the use of lossy mapping inherently stipulates that the accompanying encryption
schemes must be probabilistic to satisfy single-message multi-ciphertext
pseudorandomness
; ciphertext expansion is unavoidable
⇒ the size of OKVS increases

Observation: if adopting injective mapping, then ME can be built from determin-
istic encryption schemes satisfying multi-message multi-ciphertext pseudorandom-
ness.
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ME from Deterministic Encryption and Injective Mapping

ME from deterministic SKE and injective mapping.
KeyGen(1κ): picks kske

R←− K, picks s R←−M , sets H : xi → i, outputs
sk = (kske,H).
Enc(k, x): outputs c← SKE.Enc(kske,H(x)).
Dec(sk, c): outputs ‘1’ iff SKE.Dec(kske, c) ∈ [n], where n = |X|.

Lemma: If SKE/PKE satisfies multi-message multi-ciphertext pseudorandomness, then
the ME construction satisfies multi-element pseudorandomness with consistency error
n/|M |.

SKE candidate: PRP-based construction such as AES ; compact ciphertext
PKE candidate: unclear for the time being (deterministic PKE?)
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Vector Oblivious Decrypt

Since the decryption result of ME is only 1-bit to indicate membership, thus the
accompanying VODM can be simplified to VOD.

VOD

receiver sender

c = (c1, . . . , cn) ∈ Cn
k/sk, m ∈M

e = (e1, . . . , en) ∈ {0, 1}n

bi = Decrypt(k/sk, ci)
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Performance
Comm. (MB) Running time (s)

R S LAN 1Gbps 100Mbps 10Mbps
T = 1 T = 8 T = 1 T = 8 T = 1 T = 8 T = 1 T = 8

n Protocol
setup online setup online

total
setup online setup online setup online setup online setup online setup online setup online setup online

KRTW 0.02 4.17 0.01 29.63 33.8 0.07 3.5 0.03 1.07 0.49 16.13 0.37 14.06 0.83 27.36 0.72 24.66 0.81 55.9 0.73 55.32

GMRSS 0.02 5.89 0.02 7.96 13.85 0.1 1.01 0.04 0.42 0.66 1.96 0.46 1.28 1 3.53 0.91 2.97 1.06 14.44 0.93 13.97

JSZDG-R 0.01 4.65 0.01 5.63 10.28 0.07 1.81 0.02 0.52 0.27 2.65 0.23 1.34 0.49 4.19 0.41 2.66 0.45 12.08 0.37 10.63

SKE-PSU 0.01 3.16 0 3.36 6.52 0.03 0.65 0.02 0.29 0.12 6.76 0.11 6.48 0.21 12.66 0.19 12.09 0.2 15.62 0.19 15.59

PKE-PSU 0.01 1.16 0 1.59 2.75 4.6 2.37 4.58 1.07 4.78 2.63 4.75 1.34 4.92 3.02 4.9 1.77 4.99 4.43 4.91 3.79

214

PKE-PSU* 0.01 2.16 0 2.9 5.05 4.6 1.96 4.6 0.59 4.75 2.36 4.76 1 4.95 2.76 4.91 1.54 4.92 5.72 4.93 5.31

KRTW 0.02 17.64 0.01 122.05 139.69 0.07 12.57 0.03 3.76 0.46 26.27 0.39 20.96 0.82 40.09 0.73 36.3 0.81 163.48 0.75 161.63

GMRSS 0.02 25.95 0.02 34.11 60.06 0.11 4.79 0.04 1.95 0.64 6.61 0.48 4.25 1.11 12.67 0.92 9.78 1.04 60.75 0.94 57.5

JSZDG-R 0.01 20.75 0.01 24.74 45.49 0.07 7.5 0.02 2.25 0.3 9.29 0.2 4.45 0.44 13.78 0.4 8.58 0.47 49.41 0.42 44.58

SKE-PSU 0.01 12.61 0 13.41 26.03 0.04 2.66 0.02 1.15 0.13 8.66 0.11 7.32 0.2 15.84 0.19 14.39 0.2 31.79 0.19 30.98

PKE-PSU 0.01 4.62 0 6.37 10.99 4.62 9.75 4.59 4.39 4.82 10.21 4.76 5.22 4.9 10.94 4.91 5.83 5.01 16.38 4.92 13.61

216

PKE-PSU* 0.01 8.63 0 11.57 20.19 4.57 7.96 4.6 2.58 4.76 8.68 4.77 3.37 4.93 9.94 4.91 4.65 4.94 21.46 4.93 19.67

KRTW 0.02 69.29 0.01 562.76 632.05 0.08 63.02 0.03 17.67 0.52 85.56 0.39 45.31 0.76 111.14 0.71 113.83 0.84 660.33 0.74 664.93

GMRSS 0.02 113.7 0.02 145.11 258.81 0.13 20.74 0.03 9.8 0.58 28.62 0.55 16.63 1.09 49.68 0.93 38.82 1.03 251.84 0.97 243.63

JSZDG-R 0.01 92.67 0.01 107.89 200.56 0.07 41.15 0.03 10.71 0.25 43.17 0.21 16.84 0.42 64.06 0.4 33.8 0.53 221.27 0.39 191.2

SKE-PSU 0.01 50.34 0 53.51 103.85 0.04 10.78 0.02 4.88 0.12 17.83 0.1 12.32 0.2 28.38 0.18 22.54 0.21 98.96 0.19 95.72

PKE-PSU 0.01 18.5 0 25.45 43.95 4.6 41.5 4.59 19.82 4.79 42.37 4.75 20.97 4.92 44.8 4.91 23.38 4.92 66.68 4.9 54.39

218

PKE-PSU* 0.01 34.5 0 46.26 80.76 4.61 34.63 4.58 12.26 4.78 37.1 4.75 13.99 4.92 40.62 4.92 18.45 4.91 85.31 4.92 79.22

KRTW 0.02 300.14 0.01 2305.8 2605.95 0.11 245.37 0.04 67.97 0.52 281.96 0.38 120.35 0.82 363.95 0.74 361.12 0.84 2643.84 0.75 2638.05

GMRSS 0.02 493.2 0.02 615.9 1109.1 0.11 100.48 0.04 48.53 0.62 119.98 0.51 75.76 1.11 207.83 0.95 164.25 1.09 1074.33 0.95 1030.3

JSZDG-R 0.01 405.53 0.01 467.26 872.79 0.08 173.07 0.04 54.41 0.48 184.63 0.2 73.28 0.47 266.51 0.73 146.13 0.47 941.5 0.72 825.16

SKE-PSU 0.01 200.88 0 213.55 414.43 0.05 44.73 0.03 22.78 0.13 59.65 0.11 35.71 0.2 86.11 0.2 65.18 0.21 378.57 0.4 369.24

PKE-PSU 0.01 74 0 101.8 175.8 4.65 168.79 4.6 79.95 4.78 169.18 4.79 86.49 4.97 179.58 4.94 96.32 4.97 269.32 4.87 216.19

220

PKE-PSU* 0.01 138 0 185 323 4.64 144.24 4.58 50.56 4.75 146.41 4.74 60.5 4.9 161.26 5 76.33 4.99 345 4.9 313.37

communication: 3.7− 14.8× reduction depending on set sizes
running time: 1.2− 12× speed-up depending on network enviroments and set sizes
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Thanks for Your Attention!
Any Questions?
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