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Privacy in Payment System
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external observer cannot identify the sender and recipient
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Auditing in Payment System

Alice Bob
- l a«b
' validity check
- T regulation
Dee-I -,
require consent of user o fltx) =1
interactive/user-awareness
supervision

do not require consent of user

. . sender=Alice, receiver=Bob
non-interactive/user-unawareness

v =1024
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Centralized Payment System

- .~

@ txs are kept on a private ledger only known to the center

@ the center is in charge of validity check as well as protecting privacy and
conducting audit
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Decentralized Payment System (Blockchain-based Cryptocurrencies)

@ txs are kept on a global distributed public ledger — the blockchain

@ to ensure public verifiability, Bitcoin and Ethereum simply expose all tx
information in public ~ no privacy
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Motivation

Privacy and Auditability are crucial in any financial system, we want to know:

In the decentralized setting, can we have the good of both?

anonymit strong privacy
S double-edged sword
A

confidentiality

regulation supervision

In this work, we trade anonymity for auditing, propose the first

decentralized

payment (DCP) system (in the account-based model)
support regulation and supervision
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Outline

© Framework of Auditable DCP System
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Desired Functionality and Security

Verifiability validity of txs are publicly verifiable
Authenticity only owner can generate tx; nobody else can forge
Confidentiality external observer learns the transfer amount
Soundness nobody cannot generate an illegal tx that passes validity check
o user cannot cheat and regulation does not leak more info
Auditability

other than auditing result

Supervision auditor can see everything, but unable to breach authenticity
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The Devil is in the

Det ils

Formal security model for ADCP is quite challenging

@ powerful enough to capture all possible real-world attacks

@ clean and handy to use

We refer to the backup slides for the details.
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Choice of Building Blocks

eliminate out-of-band transfer

additively HE

Signature

©Yu Chen
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Choice of Building Blocks

Verifiability

embed backdoor

additively HE Supervision

Authenticity i global escrow

Signature

 key reuse
Confidetiality e

Regulation

Soundness
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Generic Construction of ADCP
Setup(1*) — (pp, sp)

ISE.Setup(1%) — ppise, NIZK.Setup(1*) = ppaizk
ISE.Gen (ppise) — (pka, ska)

embed backdoor for supervision
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Regulation

expressiveness of NIZK in use ~ supported regulation policies

flimit32?:17)i </ frate :'Ul/UQZP fopen tv ="

anti-money laundering pay tax selective opening

TAXES

)
4
ctX; -
b
™ CtX; & ™ CtX; m Ccixg ™ ctx ™
- - b OFFICE - P
ctx, M™
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Supervision

data structure of ctx

signed part

Q]
o core memo info Tyalid
en _ al §
Ska sn pk’sv C’Sa pkr: CT: pkav Ca Tequal Tright Tsolvent g
‘ v
aux info
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Supervision

data structure of ctx

signed part
o - - \
core memo info Tyalid

skq sn | pks, Cs, pky, Cy, pka, Cy | Tequal Tright Tsolvent | O
aux info
STOC 1990

Naor-Yung PKE
double enc paradigm CPA ~» CCA
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Supervision

data structure of ctx

signed part

& - .
B e core memo info Tyalid
_ en _ val \
skq sn | pks, Cs, pky, Cy, pka, Cy | Tequal Tright T'solvent | O
. ‘ L - ]
aux info
STOC 1990 Ecriple enc paradigm 'E*auditor's view = recipient’s view
T - .
extend ensure supervision correctness

Naor-Yung PKE
double enc paradigm CPA ~» CCA
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Outline

© An Efficient Instantiation: PGC
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Disciplines in Mind

While ADCP framework is intuitive, secure and efficient instantiation requires clever
choice and design of building blocks.

efficient ctx generation /verification

efficient .
compact ctx size

system does not require a trusted setup

transparent setu
P P design case-tailored NIZK

build the system from reusable gadgets

simple & modular .
P can be reused in other places

& @ (B
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Encryption Component of ISE

the initial attempt

ElGamal

g pk"g™
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Encryption Component of ISE

the initial attempt
state-of-the-art

ElGamal Bulletproofs
oblivious

td .
consistency Pedersen

proof commitment
g Pk g™ {Biprotocol|——— ¢'h" —————g"h"

Quisquis's approach [FMMO19]
bring extra bridging cost
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Encryption Component of ISE

the initial attempt
state-of-the-art

ElGamal Bulletproofs
Ob'it‘;ious integration of Bulletproof
and Sigma protocol

g pk'g" S-Bullet gh"

Zether's approach [BAZB20]
require dissecting Bulletproof, not modular
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Encryption Component of ISE

the initial attempt

state-of-the-art

ElGamal Bulletproofs
oblivious
td
g pk‘ gm gv"hm
[ simple and efficient, but not friendly to the state-of-the-art range proofs

18/57



Encryption Component of ISE: Twisted EIGamal
twisted ElGamal

PN
s N

s N
-

g" pk"g™
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Encryption Component of ISE: Twisted EIGamal
twisted ElGamal

’ N
s N
s N
-

g kg™

state-of-the-art

Bulletproofs

pk” g'hm

@ encode message over another generator h
@ switch key encapsulation and session key
@ advantages

@ as secure and efficient as standard ElGamal;
@ Bulletproofs-friendly: especially in the aggregated mode

g’l" hm

© also friendly to other range proofs [CCS08, CKLR21] that accept Pedersen

commitment as instance
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Comparison to ElIGamal

size efficiency
ElGamal | pp | pk | sk C KeyGen Enc Dec
standard | |G| | |G| | |Z,] | |2G] | 1Exp | 3Exp+2Add | 1Exp+1Add+1DLOG
twisted | 2|G| | |G| | |Z,| | |12G| | 1Exp | 3Exp+2Add | 1Exp+1Add+1DLOG

Related works [FMMO19, BAZB20] use brute-force algorithm to decrypt, we use
Shanks's algorithm to speed decryption = admits flexible time/space trade-off and
parallelization!

Table: Costs of working with Bulletproofs between standard ElGamal and twisted ElGamal: an

additional Pedersen commitment and a Sigma protocol for consistency.

the saving could be tremendous when processing millions of data

ElGamal size efficiency
standard | 2|G| +|Z,| | 4Exp+1Add
twisted 0 0
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Comparison to Paillier

Table: Twisted ElGamal vs. Paillier PKE (32-bit message space and 128-bit security)

timing (ms) | Setup | KeyGen Enc Dec ReRand | Add Sub | Scalar
Paillier — 1644.53 | 32.211 | 31.367 — 0.0128 — —
t-ElGamal 53s+5s 0.009 0.094 0.604 0.105 0.004 | 0.004 | 0.079

with 64MB lookup table to accelerate decryption 4 ~ 300x speed up in computation

efficiency
size (bytes) | public parameters | public key | secret key | ciphertext
Paillier — 384 384 768
t-ElGamal 66 33 32 66

10x speed up in communication cost
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Signature Component of ISE

We choose Schnorr signature as the signature component.

@ Setup and KeyGen of Schnorr signature are identical to those of twisted EIGamal.

key reuse strategy v
@ Sign of Schnorr signature is irrelevant to Decrypt of twisted EIGamal:

o Sign(sk,m): pick r & Z,, set A = g", compute e = H(m, A), z =r + sk - e mod p,
output o = (4, 2).

recall Schnorr signature is provably secure by modeling H as RO: simulating
signature oracle by programing H without using sk = signatures reveals
zero-knowledge of sk

joint security v/

We can also use ECDSA/SM2 signature schemes.
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NIZK for Lequal

According to our ADCP framework and twisted ElGamal, Lequal can be written as:
{(pki, Xi, Yi)igpg) | 31, 72,73, v s.t. Xy = pki* AY; = g"h" for i =1,2,3}.

On statement (pki,XZ',Y;;)ie[g], P and V interact as below:
Q P picks a,b <& Z,, sends A; = pk{, B = g*h® to V.
@ V picks e & Z,, and sends it to P as the challenge.
© P computes z; = a+ er; for i € [3] and t = b+ ev using w = (r1,7r2,73,v), then
sends (21, 22, 23,t) to V. V accepts iff the following four equations hold
simultaneously:

Pk = AX{ (1)
gh' = BYY (2)
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NIZK for Lright

According to our ADCP framework and twisted ElGamal, Lyigh: can be written as:
{(pk, X,Y) | Ir,vst. X =pk" ANY =g"h" ANv e V}.
For ease of analysis, we additionally define Lenc and Lyange as below:

Lenec = {(pk, X,Y) | Ir,v st. X =pk" ANY = g"h"}
Lrange = {Y ’ Elr, vst Y = g”h” ANV E V}

It is straightforward to verify that Lyght C Lenc A Lyange-
@ Yenc: Sigma protocol for Lenc

® Apyiiet: Bulletproofs for Lyange

DL relation between (g, h) is hard = Yenc © Apyiter is SHVZK PoK for Lyight
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NIZK for Lgovent

According to our ADCP framework, Lsovent Can be written as:
{(pk,C,C) | Isk s.t. (pk, sk) € Ryey A ISE.Dec(sk,C — C) € V}.

C = (X =pk™,Y = g"h™) encrypts m of pk under 7, C = (X =pk", Y =g"h")
encrypts v under 7. Let C" = (X' = pk", Y’ = g" h™) = C' — C, Lsoivent can be
rewritten as:

{(pk,C") | Ir’',m' s.t. C" = ISE.Enc(pk, m’;r") Am/ € V}.

Prove it as Lyight? No! 7’ is unknown.
Solution: refresh-then-prove
Q refresh C’ to C* under fresh randomness r* < can be done with sk

@ prove (C,C*) € Lequal <= Sigma protocol Xgqn (do not need 7”)
© prove C* € Lyight
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Bonus: two useful proof gadgets

twisted EIGamal + Bulletproofs: prove an encrypted message lies in specific range

o extremely useful in privacy-preserving applications: confidential transaction and
secure machine learning
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NIZK for Auditing Policies: (1/2)

Liimit = {(pk, {Ci}1<i<n, Gmax) | Isk s.t.

(pk, sk) € Riey A v = ISE.Dec(sk, Ci) A > v; < amax}

i=1

P computes C' = """ | C;, proves (pk,C) € Leojyent using Gadget-2

Lopen = {(pk,c = (X,Y),’U) ‘ ElSk‘ st. X = (Y/hU)Sk /\pk; = gSk}
(pk, X,Y,v) € Lopen is equivalent to (Y /h", X, g, pk) € Lqdn.
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NIZK for Auditing Policies: (2/2)

Lrate = {(pka 017 C2ap) | dsk s.t.
(pk, sk) € Rykey A v; = ISE.Dec(sk, C;) Avi/va = p}

We assume p = a/3, where a, 3 are positive integer much smaller than p.
Let C1 = (pk™, g h""), Cy = (pk™, g"2h"2). P computes
Cl=B-Cy = (X] =pk",Y] = g hP")
Cy=a-Cy= (X5 =pk®? Y, = g*"h*"?)

Note vy /ve = p = a/f3 iff WPV = h*2. (pk, Oy, Ca, p) € Lyate is equivalent to
(Y{/YQIaXi/Xé’gapk) € deh-

Thanks to nice algebra structure of twisted EIGamal, PGC supports efficient audit-

ing for any policy that can be expressed as linear constraint over transfer amount
and balance

28 /57



Optimizations

sn

pk& CS7pk7‘7 CTapkay C(l

1 1 % 2 2
Trequal © (Tenc © Tpuliet) © (C © Tddh © Téne © Tiyiiet)
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Optimizations

randomness reuse

sn

pks, Cs, pky, Cr, pka, Cq

1
Tequal © (7T

1
enc © Thullet

) © (C* © Tdh © Tene © Thyiet)

Randomness-Reusing

@ original construction encrypts the same message v under pk; (i = {s,7,a} using
independent random coins: (pks, pk.',

, Pkr, k72, 9" WY pka, P2, 9" hY)

o twisted ElGamal is IND-CPA secure in 1-message/3-recipient setting

even when reusing randomness = (pks,pkg,pkr,pk}f,pka,pkzg,)
Benefit: compact ctx size & simpler design of Yenc
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Optimizations

randomness reuse

absorb

- ~

sn

pk87 C$7pk7") CrupkLh Ca

\

v 1 1 2 2
Tequal © (Tenc © ﬂbullet) 0 (C* 0 T4dh © Tgnc © W?\ullet)

aggregate

More Efficient Assembly of NIZK

@ Tenc Can be removed since meqyal already proves knowledge of C

@ nice feature of twisted EIGamal = two Bulletproofs can be generated and verified
in aggregated mode ~ reduce the size of range proof part by half

Benefit: further shrink the ctx size
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Optimizations

eliminate explicit sig
B R =

randomness reuse absorb Lo RN

-~ /7 \

\ v

v 1 1 2 2
sn | pks, Cs, pky, Cr, pkqa, Cy Trequal © (ﬁénc © ﬂ-bullet) © (C* O Tddh © Trenc © 7Tbullet) LS
A viY

aggregate

Eliminate Explicit Signature
@ Ygdn (3-move public-coin ZKPoK of sk;) is a sub-protocol of NIZK for Lgojyent
@ apply the Fiat-Shamir transform by appending the rest part to hash input ~ myqn
serves as both a proof of DDH tuple and a sEUF-CMA signature of ctx (jointly
secure with twisted EIGamal)

Benefit: further shrink the ctx size & speed ctx generation/verification
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Recap of Efficient Instantiation

ISE

NIZK for Lvalid
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Recap of Efficient Instantiation

NIZK for Lvalid

— Fiat-Shamir ——

transparent
setup

twisted Schnorr
ElGamal PKE Signature / \

ZK friendly identical keypair Lequal Lright Lsoivent

cryptographic
hash

jointly secure ISE Yequal Yenc © Apullet  Xiddh © Lenc © Abullet
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Deploy as Cryptocurrency

Table: The computation and communication complexity of ADCP.

ctx size transaction cost (ms)
ADCP big-O bytes generation verify
transaction (2log,(£) + 22)|G| + 11|Zy)| 1408 42 15
. roof size auditing cost (ms
regulation big—?’) bytes generatioﬁ ( virify
limit policy (2logy(€) 4+ 4)|G| + 5|Z,| 622 21.5 7.5
rate policy 2|G| + 11Z,,| 98 0.55 0.69
open policy 2|G| + 1|Z,,| 98 0.26 0.42
supervision opening < 1ms

@ Set Upmax = 26 — 1, where £ = 32

@ Choose EC curve prime256v1 (128 bit security), |G| = 33 bytes, |Z,| = 32 bytes.

e MacBook Pro [Intel i7-4870HQ CPU (2.5GHz), 16GB of RAM]
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up SDCT
Initialize
Initialize
hash map does not exist,
map building and ser
alrea xists g to

loadin

ElGamal
begin to build and
time

serialize
22646.1
rebuild

takes
load
akes time

and

two accour
reation

2F38822FB636767 >6DA5113

2976107E2EA292C7B51B1FDEF89CD4ABD233A2

account eation
04D6F787C791C27900A
30A282586
balanc

3B12495249C25A37AD1AC3FCAD8DOE22AB1138D30F16E509D2B

initial

~ v SDCT-CRYPTOCURRENCY

> build
v depends
+ bulletproofs
G aggregate_bulletproof.hpp
G innerproduct_proof.hpp
~ common
- global.hpp

print.hpp
routines.hpp

G
G hash.hpp
G
c

v nizk
€ nizk_dlog_equality.hpp
@ nizk_plaintext_equality.hpp
G+ nizk_plaintext_knowledge.hpp
v sm
G sm3hash.hpp
+ twisted_elgamal
G calculate_dlog.hpp
G+ twisted_elgamal.hpp
v src
G+ SDCT.hpp
> test
M CMakelLists.txt
f LICENSE
¥ README_cn.md
README_cn.pdf
¥ README_en.md




Deploy as a Service

provide auditable confidential transaction service for ETH platform.

Service Layer
Go

SA-DCP service

i account gen
check balance}

ctx gen

SA-DCP SA mudule

SA-DCP user module

SA-DCP<ETH module

<

deposit

draw

ETH platform
Solidity

SA-DCP contract verification modulée

experimental result on ETH Ganache 2.4.0 ~ SA-DCP service is practical
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(59) sLocks ) TRansacrions  ((€]) contracts () events

CURRENT BLOCK. GAS PRICE GASLIMIT HARDFORK NETWORK ID RPC SERVER MINING STATUS WORKSPACE ST
[) 0 8000000 MUIRGLACIER 5777 HTTP://127.0.0.1:8545 AUTOMINING QUICKSTART

MNEMONIC HD PATH
three stock swap matter mutual okay virus guess river behave recall decrease m/44"/60'/0'/0/account_index

ADDRESS BALANCE TX COUNT INDEX
0xe®CC6D58A344734b9A3e5179C769DOO5F72BF6C3  128.00 ETH 0 0 &
ADDRESS BALANCE TX COUNT INDEX &
0x7402b27f057Cb618F7652d8365e1a3741cC857¢c6  128.00 ETH 0 1

ADDRESS BALANCE TX COUNT INDEX
0x6d7b442e2dA5Ab6e84EF6EaO7BACOe03e4087bD4  128.00 ETH 0 2 &
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© Summary
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Comparison to Related Works

Table: Comparison to other account-based DCP

Scheme trazzsjrr)ent scalability confidentiality anonymity regulation supervision

zkLedger v+ DL O(n) ? v O(m, | f]) X
Zether v+ DL o(1) v v ? X
ADCP v+ DL O(1) v X o(f]) v

@ n is the number of system users, m is the number of all transactions on the ledger

o zklLedger [NVV18]: (i) ctx size is linear of n, and n is fixed at the very beginning.
(i) confidentiality is questionable due to the use of correlated randomness; (iii)
audit efficiency is linear of both m and |f| due to anonymity

o Zether [BAZB20]: (i) possibly support audit when sacrificing anonymity; (ii)
security of ZKP is hard to check
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Summary

We propose a framework of ADCP from ISE and NIZK with formal security model and
rigorous proof

@ provide strong privacy and security guarantees for normal users

@ provide handlers to conduct regulation and supervision for authority

We instantiate the ADCP by carefully designing and combining cryptographic
primitives ~ PGC

@ transparent setup, security solely based on the DLOG assumption
@ modular, simple and efficient
Highlights

o twisted ElGamal: efficient, homomorphic and zero-knowledge proof friendly ~ a
good alternative to ISO standard HE schemes: ElGamal and Paillier

@ two proof gadgets: widely applicable in privacy-preserving scenarios, e.g. secure
machine learning

38/57



History of This Work

2019.01: run out of ideas, begin to investigate cryptocurrency

2019.02: brain storming, solve a bunch of technical difficulties

@ a simple twist = twisted ElGamal
2019.03: finish a rush draft
2019.04-05: finish demo code based on MIRACL
2019.06-07: finish the security proofs of ZK part
2019.08-09: rewrite the demo code based on OpenSSL
2020.06: ESORICS 2020
2020.09-11: support supervision, winner of 1st FinCrypto competition

2021.09-10: rewrite the code with some new optimization tricks
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Impact

CISC 2019 ESORICS 2020 b B RRE BT (3/205)
Challenge1 CISC 2019 I;"""E : ’

Computer Security -
ESORICS 2020

INCS 12308

Team Mugiwara, Zhicong Huang from Alibaba Group

ARRAUFARORR

Team Kunlun: Yu Chen from Ant Financial

3rd Place ($500) .o
(Vacancy) ) Springer
.
Foteini Baldimtsi @ GMU We note that zkLedger [51] uses Pedersen commitments but overlooks the connection

with twisted ElGamal. A proper use of twisted ElGamal in zkLedger can lead to
optimizations as discussed in detail in Appendix D.

By using twisted ElGamal [25], MINILEDGER is fully-compatible with Bulletproofs
[17] which can further reduce its concrete storage requirements.

different public keys. PGC is one of the few works that recognizes the problem
of efficient small dlog lookup tables, and while it highlights the greater efficiency
of heuristic approaches like kangaroo, it still opts for Shanks to enable easy
amortization for the time-space tradeoff and parallelization. In their proof of
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Thanks for Your Attention!

Any Questions?

4157



Reference |

[BAZB20]

[CCS08)

[CKLR21]

[FMMO19]

[NVV18]

Benedikt Biinz, Shashank Agrawal, Mahdi Zamani, and Dan Boneh. Zether: Towards privacy in a
smart contract world. In Financial Cryptography and Data Security - FC 2020, volume 12059,
pages 423—-443. Springer, 2020.

Jan Camenisch, Rafik Chaabouni, and Abhi Shelat. Efficient protocols for set membership and
range proofs. In Advances in Cryptology - ASIACRYPT 2008, volume 5350 of Lecture Notes in
Computer Science, pages 234-252. Springer, 2008.

Geoffroy Couteau, Michael KlooB, Huang Lin, and Michael Reichle. Efficient range proofs with
transparent setup from bounded integer commitments. In Advances in Cryptology - EUROCRYPT
2021, volume 12698 of LNCS, pages 247-277. Springer, 2021.

Prastudy Fauzi, Sarah Meiklejohn, Rebekah Mercer, and Claudio Orlandi. Quisquis: A new design
for anonymous cryptocurrencies. In Advances in Cryptology - ASIACRYPT 2019, volume 11921 of
Lecture Notes in Computer Science, pages 649-678. Springer, 2019.

Neha Narula, Willy Vasquez, and Madars Virza. zkledger: Privacy-preserving auditing for
distributed ledgers. In 15th USENIX Symposium on Networked Systems Design and
Implementation, NSDI 2018, pages 65-80, 2018.

4257



Outline

© Backup

43/57



Outline

@ Backup
@ Formal Security Model

44 /57



Formal Security Model (Oracles)

/ OextH

OregHg’Otrans
register honest accounts Oreveal
register corrupted accounts

\)regC*’Oinject

corrupt honest accounts

direct honest accounts to conduct ctx

ask honest accounts to reveal ctx

inject ctx from corrupted accounts
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Formal Security Model: Authenticity

VerifyCTx(ctx*) =1 A ~ pp < Setup(\);

AdVA()\) =Pr pk: S Thonest A ctx* §é Tctx(pk;k) oot ‘Ao(pp);
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Formal Security Model: Confidentiality

pp + Setup(N);
(state, pk?, pk},vo,v1) < A (pp);
Adva(\) =Pr |B=08": g&{0,1} -
ctx* < CreateCTx(sk}, pky, pk;, vg);
B« A9 (state,ctx*);
To prevent trivial attacks, A is subject to the following restrictions:
Q pkl,pk) chosen by A are required to be honest accounts, and A is not allowed to
make corrupt queries to either pk} or pky;
@ A is not allowed to make reveal query to ctx®.

@ let vgym (with initial value 0) be the dynamic sum of the transfer amounts in

Otrans queries related to pk? after ctx*, both U5 — vg — vsym and U5 — V1 — Vsum
must lie in V.

Restrictions 1 and 2 prevents trivial attack by decryption, restrictions 3 prevent
inferring B by testing whether overdraft happens.
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Formal Security Model: Soundness

VerifyCTx(ctx*) =1  pp < Setup(\);

Adv4(A) = Pr A memo* ¢ Lyaiq ~ ctx* « A%(pp); |-

Here, ctx* = (sn*, memo*, aux®).
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A Subtle Point: Key reuse vs. Key Separation

We employ PKE and SIG simutaneously to secure auditable DCP.

key separation key reuse
(pk1, sky), (pka, sks) (pk, sk)
Pros Pros
o off-the-shelf & easy to analyze o greatly simplify DCP system
Cons @ more efficient
@ double key size Cons
@ tricky address derivation @ case-tailored design

We choose Integrated Signature and Encryption (ISE): one keypair for both encryption
and sign, while IND-CPA and EUF-CMA hold in the joint sense
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Generic Construction of Auditable DCP: Building blocks

ISE = (Setup, KeyGen, Sign, Verify, Enc, Dec)
e PKE component is additively homomorphic over Z,

e Fix pp, KeyGen naturally induces an NP relation:

Rikey = {(pk, sk) : 3r s.t. (pk, sk) = KeyGen(pp; )}

NIZK = (Setup, CRSGen, Prove, Verify)
@ adaptive soundness
o adaptive ZK
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Algorithms of Auditable DCP: 1/4

Setup(1*): generate pp for the auditable DCP system
® ppise < ISE.Setup(1?), ppniz + NIZK.Setup(1?), ers «+ NIZK.CRSGen (pppizk)
@ output pp = (ppiseappnizka CTS): set V = [07 'Umax]

CreateAcct(0,sn): create an account
o (pk,sk) < ISE.KeyGen(ppise), pk serves as account address
o C « ISE.Enc(pk, ¥;7)

RevealBalance(sk, C): reveal the balance of an account
o 7 < ISE.Dec(sk, C)
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Algorithms of Auditable DCP: 2/4

CreateCTx(sks, pks, v, pky): transfer v coins from account pk to account pk;..
e C; < ISE.Enc(pks,v;r1), Cp < ISE.Enc(pk,,v;rs), memo = (pks, pk,,Cs, Cy.).

e run NIZK.Prove with witness (sks,r1,72,v) to generate a proof g for
memo = (pkwpkm CSa Cr) € Lvalid = Lequal A Lright A Lsolvent

Lequal = {(Pks, pkr, Cs,Cy) | Iri,ra,v st
Cs = ISE.Enc(pks, v;r1) A Cr = ISE.Enc(pk,, v;72)}
Lyight = {(pks, Cs) | 3r1,v s.t. Cs = ISE.Enc(pks,v;r1) Av € V}
Leovent = {(pks, Cs, Cs) | Isky s.t. (pks, sks) € Ryey A ISE.Dec(sks, Cs — Cs) € V}

@ o < ISE.Sign(sks, (sn, memo, myalid))

@ output ctx = (sn, memo, Tyalid, 7).
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Algorithms of Auditable DCP: 3/4

signed message
/\
e memo Tvalid ~~
sn | pks, pk., Cs, C; Tequal Tright Tsolvent | O

~~

aux
Figure: Data structure of confidential transaction.

VerifyCTx(ctx): check if ctx is valid.
@ parse ctx = (sn, memo, Tyajid, @), memo = (pks, pk,, Cs, Cy.):
@ check if sn is a fresh serial number of pks (inspect the blockchain);
@ check if ISE.Verify(pks, (sn, memo, myaid),0) = 1;
© check if NIZK . Verify(crs, memo, myaiid) = 1.
@ ctx is recorded on the ledger if validity test passes or discarded otherwise.

Update(ctx): sender updates his balance C’S = C’S — (s and increments sn, receiver
updates his balance C,. = C, + C...
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Algorithms of Auditable DCP: 4/4

JustifyCTx(pk, sk, {ctx;}[~1, f): user pk runs NIZK.Prove with witness sk to generate
a zero-knowledge proof 7y for f({ctx;}i-;) = 1.

Siimit : Z?:l vy </ frate s v1/v2 = p fopen 1 v ="
anti-money laundering tax payment selective disclosure
ctx
)
4ab
~ ctx; ~ Ctx; g CtXo ™ Cctx ™
-b }:zi -b db OFFICE -ab ab
ctx, m™

(4

AuditCTx(pk, {ctx; }i—;, f,7¢): auditor runs NIZK.Verify to check if 7y is valid.
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Security Proof

Theorem: Assuming the security of ISE and NIZK, our CTx framework is secure.

@ security of ISE’s signature component = authenticity
@ security of ISE's PKE component + adaptive ZK of NIZK = confidentiality

@ adaptive soundness of NIZK =- soundness
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