Auditable Decentralized Confidential Payment System

Yu Chen Shandong University

Outline

- 2 Framework of Auditable DCP System
- 3 An Efficient Instantiation: PGC
- 4 Experimental Results

- Formal Security Model
- Key Reuse vs. Key Separation
- Generic Framework and Security Proof

Outline

- 2 Framework of Auditable DCP System
- 3 An Efficient Instantiation: PGC
- 4 Experimental Results
- 5 Summary
- 6 Backup
 - Formal Security Model
 - Key Reuse vs. Key Separation
 - Generic Framework and Security Proof

Privacy in Payment System

©Yu Chen

Auditing in Payment System

Yu Chen

Centralized Payment System

- txs are kept on a private ledger only known to the center
- the center is in charge of <u>validity check</u> as well as protecting privacy and conducting audit

Decentralized Payment System (Blockchain-based Cryptocurrencies)

- txs are kept on a global distributed public ledger the blockchain
- to ensure public verifiability, Bitcoin and Ethereum simply expose all tx information in public \rightsquigarrow no privacy

57

Motivation

Privacy and Auditability are crucial in any financial system, we want to know:

anonymity strong privacy double-edged sword confidentiality plausible deniability regulation supervision

In the decentralized setting, can we have the good of both?

In this work, we trade anonymity for auditing, propose the first

decentralized confidential payment (DCP) system (in the account-based model) support regulation and supervision

57

Outline

Background

- 2 Framework of Auditable DCP System
- 3 An Efficient Instantiation: PGC
- 4 Experimental Results
- 5 Summary
- 6 Backup
 - Formal Security Model
 - Key Reuse vs. Key Separation
 - Generic Framework and Security Proof

Desired Functionality and Security

©Yu Chen

/ 57

Formal security model for ADCP is quite challenging

- powerful enough to capture all possible real-world attacks
- clean and handy to use

We refer to the backup slides for the details.

 $\mathsf{Setup}(1^\lambda) \to (pp, \textit{sp})$

$$\begin{split} \mathsf{ISE}.\mathsf{Setup}(1^{\lambda}) &\to pp_{\mathsf{ise}}, \, \mathsf{NIZK}.\mathsf{Setup}(1^{\lambda}) \to pp_{\mathsf{nizk}} \\ & \mathsf{ISE}.\mathsf{Gen}(pp_{\mathsf{ise}}) \to (pk_a, \frac{sk_a}{a}) \end{split}$$

embed backdoor for supervision

 $\begin{aligned} \mathsf{ISE.Setup}(1^{\lambda}) &\to pp_{\mathsf{ise}}, \, \mathsf{NIZK.Setup}(1^{\lambda}) \to pp_{\mathsf{nizk}} \\ & \mathsf{ISE.Gen}(pp_{\mathsf{ise}}) \to (pk_a, sk_a) \end{aligned}$

 $\mathsf{Setup}(1^\lambda) \to (pp, \textit{sp})$

 $\begin{array}{l} \mathsf{ISE.Setup}(1^{\lambda}) \to pp_{\mathsf{ise}}, \, \mathsf{NIZK.Setup}(1^{\lambda}) \to pp_{\mathsf{nizk}} \\ \\ \mathsf{ISE.Gen}(pp_{\mathsf{ise}}) \to (pk_a, \underline{sk_a}) \end{array}$

 $CreateAcct(v_s, sn_s)$

 $\mathsf{CreateCTx}(pk_s, sk_s, pk_r, v) \to \mathsf{ctx}$

$$\begin{split} \mathsf{ISE}.\mathsf{Enc} &\to \mathsf{memo} = (pk_s, C_s, pk_r, C_r, pk_a, C_a) \\ \mathsf{NIZK}.\mathsf{Prove} &\to \pi_{\mathsf{valid}} = \pi_{\mathsf{equal}} \circ \pi_{\mathsf{right}} \circ \pi_{\mathsf{solvent}} \\ \mathsf{ISE}.\mathsf{Sign}(sk_s, (\mathsf{sn}, \mathsf{memo}, \pi_{\mathsf{valid}})) \to \sigma \end{split}$$

 $\begin{array}{c|c} \mathsf{ISE.Gen}(pp_{\mathsf{ise}}) \to (pk_s, sk_s) \\ \\ \mathsf{ISE.Enc}(pk_s, v_s) \to \tilde{C}_s \\ \\ \\ \hline \\ pk_s, sk_s, \tilde{C}_s, \mathsf{sn}_s \end{array}$

 $CreateAcct(v_r, sn_r)$

©Yu Chen

 $\mathsf{Setup}(1^{\lambda}) \to (pp, sp)$ ISE.Setup $(1^{\lambda}) \rightarrow pp_{ise}$, NIZK.Setup $(1^{\lambda}) \rightarrow pp_{nizk}$ ISE.Gen $(pp_{ise}) \rightarrow (pk_a, sk_a)$ $CreateCTx(pk_s, sk_s, pk_r, v) \rightarrow ctx$ ISE.Enc \rightarrow memo = $(pk_s, C_s, pk_r, C_r, pk_a, C_a)$ NIZK.Prove $\rightarrow \pi_{valid} = \pi_{equal} \circ \pi_{right} \circ \pi_{solvent}$ $CreateAcct(v_s, sn_s)$ $CreateAcct(v_r, sn_r)$ ISE.Sign $(sk_s, (sn, memo, \pi_{valid})) \rightarrow \sigma$ $\mathsf{ISE}.\mathsf{Gen}(pp_{\mathsf{ise}}) \to (pk_s, sk_s)$ $\mathsf{ISE}.\mathsf{Gen}(pp_{\mathsf{ise}}) \to (pk_r, sk_r)$ $VerifvCTx(ctx) \stackrel{?}{=} 1$ ISE.Enc $(pk_s, v_s) \rightarrow \tilde{C}_s$ ISE.Enc $(pk_r, v_r) \rightarrow \tilde{C}_r$ $pk_s, sk_s, \tilde{C}_s, sn_s \leftarrow \tilde{C}_s - C_s$ cťx- $\underbrace{\mathsf{AuditCTx}(\pi_f, \{\mathsf{ctx}_i\}, f)}_{\mathsf{JustifyCTx}(\mathbf{sk}, \{\mathsf{ctx}_i\}, f) \to \pi_f} \xrightarrow{\mathsf{AuditCTx}}_{\mathsf{AuditCTx}} \mathbf{f}$

 $\mathsf{Setup}(1^{\lambda}) \to (pp, sp)$ ISE.Setup $(1^{\lambda}) \rightarrow pp_{ise}$, NIZK.Setup $(1^{\lambda}) \rightarrow pp_{nizk}$ ISE.Gen $(pp_{ise}) \rightarrow (pk_a, sk_a)$ $CreateCTx(pk_s, sk_s, pk_r, v) \rightarrow ctx$ ISE.Enc \rightarrow memo = $(pk_s, C_s, pk_r, C_r, pk_a, C_a)$ NIZK.Prove $\rightarrow \pi_{valid} = \pi_{equal} \circ \pi_{right} \circ \pi_{solvent}$ $CreateAcct(v_s, sn_s)$ $CreateAcct(v_r, sn_r)$ ISE.Sign $(sk_s, (sn, memo, \pi_{valid})) \rightarrow \sigma$ $\mathsf{ISE}.\mathsf{Gen}(pp_{\mathsf{ise}}) \to (pk_s, sk_s)$ $\mathsf{ISE}.\mathsf{Gen}(pp_{\mathsf{ise}}) \to (pk_r, sk_r)$ $VerifvCTx(ctx) \stackrel{?}{=} 1$ ISE.Enc $(pk_*, v_*) \rightarrow \tilde{C}_*$ ISE.Enc $(pk_r, v_r) \rightarrow \tilde{C}_r$ $pk_s, sk_s, \tilde{C}_s, sn_s \leftarrow \tilde{C}_s - C_s$ $\tilde{C}_r = \tilde{C}_r + C_r$ $\rightarrow pk_r, \frac{*}{sk_r}, \tilde{C}_r, \operatorname{sn}_r$ cťx $\underbrace{\mathsf{AuditCTx}(\pi_f, \{\mathsf{ctx}_i\}, f)}_{\mathsf{JustifyCTx}(\mathbf{sk}, \{\mathsf{ctx}_i\}, f) \to \pi_f} \xrightarrow{\mathsf{AuditCTx}}$ $\mathsf{OpenCTx}(sp, \mathsf{ctx}) \rightarrow v$

Regulation

expressiveness of NIZK in use \rightsquigarrow supported regulation policies

Supervision

Supervision

Chen 15 / 57

Supervision

^{15 / 57}

Outline

Background

- 2 Framework of Auditable DCP System
- 3 An Efficient Instantiation: PGC
- 4 Experimental Results
- 5 Summary
- 6 Backup
 - Formal Security Model
 - Key Reuse vs. Key Separation
 - Generic Framework and Security Proof

Disciplines in Mind

While ADCP framework is intuitive, secure and efficient instantiation requires clever choice and design of building blocks.

efficient

efficient ctx generation/verification compact ctx size

transparent setup

system does not require a trusted setup design case-tailored NIZK

simple & modular

build the system from reusable gadgets can be reused in other places

©Yu Chen

the initial attempt

the initial attempt

state-of-the-art

Bulletproofs

the initial attempt

the initial attempt

Quisquis's approach [FMMO19] bring extra bridging cost

the initial attempt

Zether's approach [BAZB20] require dissecting Bulletproof, not modular

the initial attempt

simple and efficient, but not friendly to the state-of-the-art range proofs

Encryption Component of ISE: Twisted ElGamal

twisted ElGamal g^{r} pk^rg^m

Encryption Component of ISE: Twisted ElGamal

Encryption Component of ISE: Twisted ElGamal

Encryption Component of ISE: Twisted ElGamal

- ${\ensuremath{\, \bullet }}$ encode message over another generator h
- switch key encapsulation and session key
- advantages
 - as secure and efficient as standard ElGamal;
 - Ø Bulletproofs-friendly: especially in the aggregated mode
 - also friendly to other range proofs [CCS08, CKLR21] that accept Pedersen commitment as instance

Yu Chen

Comparison to ElGamal

		si	ze		efficiency				
ElGamal	pp	pk	sk	C	KeyGen	Enc	Dec		
standard	$ \mathbb{G} $	$ \mathbb{G} $	$ \mathbb{Z}_p $	$ 2\mathbb{G} $	1Exp	3 Exp + 2 Add	1 Exp + 1 Add + 1 DLOG		
twisted	$2 \mathbb{G} $	$ \mathbb{G} $	$ \mathbb{Z}_p $	$ 2\mathbb{G} $	1Exp	3 Exp+2 Add	1 Exp + 1 Add + 1 DLOG		

Related works [FMMO19, BAZB20] use brute-force algorithm to decrypt, we use Shanks's algorithm to speed decryption \Rightarrow admits flexible time/space trade-off and parallelization!

Table: Costs of working with Bulletproofs between standard ElGamal and twisted ElGamal: an additional Pedersen commitment and a Sigma protocol for consistency.

ElGamal	size	efficiency			
standard	$2 \mathbb{G} + \mathbb{Z}_p $	$4Exp{+}1Add$			
twisted	0	0			

the saving could be tremendous when processing millions of data

Comparison to Paillier

Table: Twisted ElGamal vs. Paillier PKE (32-bit message space and 128-bit security)

timing (ms)	Setup	KeyGen	Enc	Dec	ReRand	Add	Sub	Scalar
Paillier	—	1644.53	32.211	31.367		0.0128	—	—
t-ElGamal	53s + 5s	0.009	0.094	0.604	0.105	0.004	0.004	0.079

with 64MB lookup table to accelerate decryption $4\sim 300\times$ speed up in computation efficiency

size (bytes)	public parameters	public key	secret key	ciphertext	
Paillier		384	384	768	
t-ElGamal	66	33	32	66	

 $10\times$ speed up in communication cost

21 / 57

Signature Component of ISE

We choose Schnorr signature as the signature component.

Setup and KeyGen of Schnorr signature are identical to those of twisted ElGamal. key reuse strategy ✓

② Sign of Schnorr signature is irrelevant to Decrypt of twisted ElGamal:

• Sign(sk, m): pick $r \xleftarrow{\mathsf{R}} \mathbb{Z}_p$, set $A = g^r$, compute $e = \mathsf{H}(m, A)$, $z = r + sk \cdot e \mod p$, output $\sigma = (A, z)$.

recall Schnorr signature is provably secure by modeling H as RO: simulating signature oracle by programing H without using $sk \Rightarrow$ signatures reveals zero-knowledge of sk

joint security \checkmark

22 / 57

We can also use ECDSA/SM2 signature schemes.

NIZK for L_{equal}

According to our ADCP framework and twisted ElGamal, L_{equal} can be written as:

 $\{(pk_i, X_i, Y_i)_{i \in [3]} \mid \exists r_1, r_2, r_3, v \text{ s.t. } X_i = pk_i^{r_i} \land Y_i = g^{r_i}h^v \text{ for } i = 1, 2, 3\}.$

On statement $(pk_i, X_i, Y_i)_{i \in [3]}$, P and V interact as below:

• P picks
$$a, b \stackrel{\mathsf{R}}{\leftarrow} \mathbb{Z}_p$$
, sends $A_i = pk_i^{a_i}$, $B = g^a h^b$ to V .

- **2** V picks $e \stackrel{\mathsf{R}}{\leftarrow} \mathbb{Z}_p$ and sends it to P as the challenge.
- P computes $z_i = a + er_i$ for $i \in [3]$ and t = b + ev using $w = (r_1, r_2, r_3, v)$, then sends (z_1, z_2, z_3, t) to V. V accepts iff the following four equations hold simultaneously:

$$pk_i^{z_i} = A_i X_i^e$$

$$g^{z_1} h^t = BY_1^e$$
(1)
(2)

23 / 57

NIZK for L_{right}

According to our ADCP framework and twisted ElGamal, L_{right} can be written as:

$$\{(pk, X, Y) \mid \exists r, v \text{ s.t. } X = pk^r \land Y = g^r h^v \land v \in \mathcal{V}\}.$$

For ease of analysis, we additionally define L_{enc} and L_{range} as below:

$$\begin{split} L_{\mathsf{enc}} &= \{ (pk, X, Y) \mid \exists r, v \text{ s.t. } X = pk^r \wedge Y = g^r h^v \} \\ L_{\mathsf{range}} &= \{ Y \mid \exists r, v \text{ s.t. } Y = g^r h^v \wedge v \in \mathcal{V} \} \end{split}$$

It is straightforward to verify that $L_{\text{right}} \subset L_{\text{enc}} \wedge L_{\text{range}}$.

- Σ_{enc} : Sigma protocol for L_{enc}
- Λ_{bullet} : Bulletproofs for L_{range}

DL relation between (g, h) is hard $\Rightarrow \Sigma_{enc} \circ \Lambda_{bullet}$ is SHVZK PoK for L_{right}

NIZK for $L_{solvent}$

According to our ADCP framework, $L_{solvent}$ can be written as:

$$\{(pk, \tilde{C}, C) \mid \exists sk \text{ s.t. } (pk, sk) \in \mathsf{R}_{\mathsf{key}} \land \mathsf{ISE}.\mathsf{Dec}(sk, \tilde{C} - C) \in \mathcal{V}\}.$$

 $\tilde{C} = (\tilde{X} = pk^{\tilde{r}}, \tilde{Y} = g^{\tilde{r}}h^{\tilde{m}})$ encrypts \tilde{m} of pk under $\tilde{r}, C = (X = pk^r, Y = g^rh^v)$ encrypts v under r. Let $C' = (X' = pk^{r'}, Y' = g^{r'}h^{m'}) = \tilde{C} - C$, L_{solvent} can be rewritten as:

$$\{(pk,C') \mid \exists r',m' \text{ s.t. } C' = \mathsf{ISE}.\mathsf{Enc}(pk,m';r') \land m' \in \mathcal{V}\}.$$

25 / 57

Prove it as L_{right} ? No! r' is unknown.

Solution: refresh-then-prove

 $\textbf{0} \ \text{refresh} \ C' \ \text{to} \ C^* \ \text{under} \ \text{fresh} \ \text{randomness} \ r^* \Leftarrow \text{can} \ \text{be} \ \text{done} \ \text{with} \ sk$

2 prove
$$(C', C^*) \in L_{equal} \Leftarrow$$
 Sigma protocol Σ_{ddh} (do not need r')

● prove $C^* \in L_{\mathsf{right}}$

twisted ElGamal + Bulletproofs: prove an encrypted message lies in specific range

• extremely useful in privacy-preserving applications: confidential transaction and secure machine learning

26 / 57

twisted ElGamal + Bulletproofs: prove an encrypted message lies in specific range

 extremely useful in privacy-preserving applications: confidential transaction and secure machine learning

$$pk^r$$
 g^rh^m

prover is the sender of C knows both r and m

twisted ElGamal + Bulletproofs: prove an encrypted message lies in specific range

• extremely useful in privacy-preserving applications: confidential transaction and secure machine learning

twisted ElGamal + Bulletproofs: prove an encrypted message lies in specific range

 extremely useful in privacy-preserving applications: confidential transaction and secure machine learning

26 / 57

knows sk and thus m

twisted ElGamal + Bulletproofs: prove an encrypted message lies in specific range

 extremely useful in privacy-preserving applications: confidential transaction and secure machine learning

twisted ElGamal + Bulletproofs: prove an encrypted message lies in specific range

 extremely useful in privacy-preserving applications: confidential transaction and secure machine learning

NIZK for Auditing Policies: (1/2)

$$L_{\mathsf{limit}} = \{ (pk, \{C_i\}_{1 \le i \le n}, a_{\max}) \mid \exists sk \text{ s.t.} \\ (pk, sk) \in \mathsf{R}_{\mathsf{key}} \land v_i = \mathsf{ISE}.\mathsf{Dec}(sk, C_i) \land \sum_{i=1}^n v_i \le a_{\max} \}$$

P computes $C = \sum_{i=1}^{n} C_i$, proves $(pk, C) \in L_{\text{solvent}}$ using Gadget-2

$$L_{\mathsf{open}} = \{(pk, C = (X, Y), v) \mid \exists sk \text{ s.t. } X = (Y/h^v)^{sk} \land pk = g^{sk}\}$$
$$(pk, X, Y, v) \in L_{\mathsf{open}} \text{ is equivalent to } (Y/h^v, X, g, pk) \in L_{\mathsf{ddh}}.$$

NIZK for Auditing Policies: (2/2)

$$L_{\mathsf{rate}} = \{ (pk, C_1, C_2, \rho) \mid \exists sk \text{ s.t.} \\ (pk, sk) \in \mathsf{R}_{\mathsf{key}} \land v_i = \mathsf{ISE}.\mathsf{Dec}(sk, C_i) \land v_1/v_2 = \rho \}$$

We assume $\rho = \alpha/\beta$, where α, β are positive integer much smaller than p. Let $C_1 = (pk^{r_1}, g^{r_1}h^{v_1})$, $C_2 = (pk^{r_2}, g^{r_2}h^{v_2})$. P computes

$$C'_{1} = \beta \cdot C_{1} = (X'_{1} = pk^{\beta r_{1}}, Y'_{1} = g^{\beta r_{1}}h^{\beta v_{1}})$$

$$C'_{2} = \alpha \cdot C_{2} = (X'_{2} = pk^{\alpha r_{2}}, Y'_{2} = g^{\alpha r_{2}}h^{\alpha v_{2}})$$

Note $v_1/v_2 = \rho = \alpha/\beta$ iff $h^{\beta v_1} = h^{\alpha v_2}$. $(pk, C_1, C_2, \rho) \in L_{\mathsf{rate}}$ is equivalent to $(Y'_1/Y'_2, X'_1/X'_2, g, pk) \in L_{\mathsf{ddh}}$.

Thanks to nice algebra structure of twisted ElGamal, PGC supports efficient auditing for any policy that can be expressed as linear constraint over transfer amount and balance

28 / 57

sn	$pk_s, C_s, pk_r, C_r, pk_a, C_a$	$\pi_{equal} \circ (\pi^1_{enc} \circ \pi^1_{bullet}) \circ (C^* \circ \pi_{ddh} \circ \pi^2_{enc} \circ \pi^2_{bullet})$	σ
----	-----------------------------------	---	---

$\begin{array}{c} \text{randomness reuse} \\ \downarrow \\ \\ \text{sn} \quad pk_s, C_s, pk_r, C_r, pk_a, C_a \quad \pi_{\mathsf{equal}} \circ (\pi_{\mathsf{enc}}^1 \circ \pi_{\mathsf{bullet}}^1) \circ (C^* \circ \pi_{\mathsf{ddh}} \circ \pi_{\mathsf{enc}}^2 \circ \pi_{\mathsf{bullet}}^2) \quad \sigma \end{array}$

Randomness-Reusing

- original construction encrypts the same message v under pk_i ($i = \{s, r, a\}$ using independent random coins: $(pk_s, pk_s^{r_1}, g^{r_1}h^v, pk_r, pk_r^{r_2}, g^{r_2}h^v, pk_a, pk_a^{r_3}, g^{r_3}h^v)$
- twisted ElGamal is IND-CPA secure in 1-message/3-recipient setting

even when reusing randomness $\Rightarrow (pk_s, pk_s^r, pk_r, pk_r^r, pk_a, pk_a^r) g^r h^v$

29 / 57

Benefit: compact ctx size & simpler design of $\Sigma_{\rm enc}$

More Efficient Assembly of NIZK

- π_{enc} can be removed since π_{equal} already proves knowledge of C_s
- nice feature of twisted ElGamal ⇒ two Bulletproofs can be generated and verified in aggregated mode ~ reduce the size of range proof part by half

29 / 57

Benefit: further shrink the ctx size

Eliminate Explicit Signature

- Σ_{ddh} (3-move public-coin ZKPoK of sk_1) is a sub-protocol of NIZK for $L_{solvent}$
- apply the Fiat-Shamir transform by appending the rest part to hash input $\sim \pi_{ddh}$ serves as both a proof of DDH tuple and a sEUF-CMA signature of ctx (jointly secure with twisted ElGamal)

29 / 57

Benefit: further shrink the ctx size & speed ctx generation/verification

Recap of Efficient Instantiation

Recap of Efficient Instantiation

Recap of Efficient Instantiation

30 / 57

Outline

Background

- 2 Framework of Auditable DCP System
- 3 An Efficient Instantiation: PGC

4 Experimental Results

5 Summary

👩 Backup

- Formal Security Model
- Key Reuse vs. Key Separation
- Generic Framework and Security Proof

Deploy as Cryptocurrency

	ct× size	transaction co	transaction cost (ms)			
ADCF -	big- ${\cal O}$	bytes	generation	verify		
transaction	$(2\log_2(\ell) + 22) \mathbb{G} + 11 \mathbb{Z}_p $	1408	42	15		
regulation	proof size	auditing cost (ms)				
regulation	big- ${\cal O}$	bytes	generation	verify		
limit policy	$(2\log_2(\ell)+4) \mathbb{G} +5 \mathbb{Z}_p $	622	21.5	7.5		
rate policy	$2 \mathbb{G} +1 \mathbb{Z}_p $	98	0.55	0.69		
open policy	$2 \mathbb{G} +1 \mathbb{Z}_p $	98	0.26	0.42		
supervision	op	$ening \leq 1ms$				

Table: The computation and communication complexity of ADCP.

- Set $v_{\max}=2^\ell-1$, where $\ell=32$
- Choose EC curve prime256v1 (128 bit security), $|\mathbb{G}| = 33$ bytes, $|\mathbb{Z}_p| = 32$ bytes.
- MacBook Pro [Intel i7-4870HQ CPU (2.5GHz), 16GB of RAM]

	V SDCT-CRYPTOCURRENCY	
Build test enviroment for SDCT >>>	> build	•
	\sim depends	
Satur SDCT system	\sim bulletproofs	
Secup Such System	G aggregate_bulletproof.hpp	
Initialize SDCI >>>	C innerproduct_proof.hpp	
Initialize Twisted ElGamal >>>	✓ common	•
hash map does not exist, begin to build and serialize >>>	ۥ global.hpp	
hash map building and serializing takes time = 22646.1 ms	€ hash.hpp	
hash map already exists begin to load and pobuld	€ print.hpp	
has map arready exists, begin to tout and reputite 227	C routines.hpp	
hash map loading and rebuilding takes time = 6357.54 ms		•
	G nizk_dlog_equality.hpp	U
	G• nizk_plaintext_equality.hpp	U
Generate two accounts	G• nizk_plaintext_knowledge.hpp	U
		•
Alicele communication exceede	ۥ sm3hash.hpp	
Alice's account creation succeeds	\sim twisted_elgamal	
pk = 043764DF55F2F38822FB6367672976107E2EA292C7B51B1FDEF89CD4ABD233A2C4666FB834156DA51139	G calculate_dlog.hpp	U
AFAAA40C20ACA5B	G. twisted_elgamal.hpp	
Alice's initial balance = 512		
	G + SDCT.hpp	
Pakia anating susanda	> test	
so s account creation succeeds	M CMakeLists.txt	
pk = 04D6F787C791C27900AFB9B883B12495249C25A37AD1AC3FCAD8D9E22AB1138D30F16E509D2B86299B12	🕺 LICENSE	
AD396330A282586	V README_cn.md	
Bob's initial balance = 256	▶ README_cn.pdf	
	BEADME en.md	

Deploy as a Service

provide auditable confidential transaction service for ETH platform.

experimental result on ETH Ganache 2.4.0 \sim SA-DCP service is practica $\sum_{34/57}$

	TS 🔡		\overleftrightarrow transa			acts) EVENTS	LOGS						
CURRENT BLOCK O	GAS PRICE 0	GAS LIMIT 8000000	HARDFORK MUIRGLACIER	NETWORK I 5777	D RPC SERVER HTTP://1	27.0.0.1:8545	MINING STATUS AUTOMINING			WORKSPACE QUICKST/	ART SA	/E SW	лтсн	8
MNEMONIC 🕜 three stock	swap mat	ter mutu	al okay vir	us guess	river beha	ve recall	decrease				HD PATH m/44'/60'	/0'/0/ac	count.	_index
ADDRESS 0×e0CC6D	58A3447	34b9A3	e5179C76	9D005F	72BF6C3	BALANCE 128.00	ETH				TX COUNT O	index O	(F
ADDRESS 0×7402b2	7f057Cb	618F76	52d8365e	1a3741	cC857c6	BALANCE 128.00	ETH				TX COUNT O	INDEX 1	(F
ADDRESS 0×6d7b442	2e2dA5A	b6e84E	F6Ea07BA	C0e03e	4087bD4	BALANCE 128.00	ЕТН				TX COUNT O	INDEX 2	(F
INF0[06-0 amount=12	06 20:4 28 <mark>gas</mark> :	45:36] =25378	CTx tro 04 <mark>tx</mark> =0>	ansfer xb8e31	9158cfa	2996555	a50f15@	e13069b	token 811e859	=0x000 91d850	0000000 5a061ab	000000 e00f4l	0000 b5c8	00000 d4a3
CTx trans Carol's o Bob's cu	sfer su curren [.] rrent l	ucceea t bala palanc	ls: Carol ince 0 :e 256	l tran	sfer 12	8 coins	to Boł							
INFO[06-0 amount=12	06 20:4 28 <mark>gas</mark> :	45:43] =24993	CTx tro 41 <mark>tx</mark> =0>	ansfer ×58d52	2f75b0c	b940ae0	f47eb8o	c63bf85	<mark>token</mark> f89f9be	=0x000	0000000 35370cd	000000 e0a450	0000 c3bc	00000 2416
CTx trans Bob's cur	sfer si rrent l	ucceed balanc	ls: Bob 1 e 128	transf	er 128	coins t	o Alice							

Outline

Background

- 2 Framework of Auditable DCP System
- 3 An Efficient Instantiation: PGC
- 4 Experimental Results

👩 Backup

- Formal Security Model
- Key Reuse vs. Key Separation
- Generic Framework and Security Proof

Scheme	transparent setup	scalability	confidentiality	anonymity	regulation	supervision
zkLedger	$\checkmark + DL$	O(n)	?	\checkmark	O(m, f)	×
Zether	$\checkmark + DL$	O(1)	\checkmark	\checkmark	?	×
ADCP	$\checkmark + DL$	O(1)	\checkmark	×	O(f)	\checkmark

Table: Comparison to other account-based DCP

- n is the number of system users, m is the number of all transactions on the ledger
- zkLedger [NVV18]: (i) ctx size is linear of n, and n is fixed at the very beginning.
 (ii) confidentiality is questionable due to the use of correlated randomness; (iii) audit efficiency is linear of both m and |f| due to anonymity
- Zether [BAZB20]: (i) possibly support audit when sacrificing anonymity; (ii) security of ZKP is hard to check

OYu Chen

Summary

We propose a framework of ADCP from ISE and NIZK with formal security model and rigorous proof

- provide strong privacy and security guarantees for normal users
- provide handlers to conduct regulation and supervision for authority

We instantiate the ADCP by carefully designing and combining cryptographic primitives \rightsquigarrow PGC

- transparent setup, security solely based on the DLOG assumption
- modular, simple and efficient

Highlights

- twisted ElGamal: efficient, homomorphic and zero-knowledge proof friendly \sim a good alternative to ISO standard HE schemes: ElGamal and Paillier
- two proof gadgets: widely applicable in privacy-preserving scenarios, e.g. secure machine learning

History of This Work

2019.01: run out of ideas, begin to investigate cryptocurrency 2019.02: brain storming, solve a bunch of technical difficulties

• a simple twist \Rightarrow twisted ElGamal

2019.03: finish a rush draft

2019.04-05: finish demo code based on MIRACL

2019.06-07: finish the security proofs of ZK part

2019.08-09: rewrite the demo code based on OpenSSL

2020.06: ESORICS 2020

2020.09-11: support supervision, winner of 1st FinCrypto competition

2021.09-10: rewrite the code with some new optimization tricks

Impact

Foteini Baldimtsi @ GMU

We note that zkLedger [51] uses Pedersen commitments but overlooks the connection with twisted ElGamal. A proper use of twisted ElGamal in zkLedger can lead to optimizations as discussed in detail in Appendix D.

By using twisted ElGamal [25], MINILEDGER is fully-compatible with Bulletproofs [17] which can further reduce its concrete storage requirements.

different public keys. PGC is one of the few works that recognizes the problem of efficient small dlog lookup tables, and while it highlights the greater efficiency of heuristic approaches like *kangaroa*, it still opts for Shanks to enable easy amortization for the time-space tradeoff and parallelization. In their proof of

40 / 57

Thanks for Your Attention! Any Questions?

Reference I

- [BAZB20] Benedikt Bünz, Shashank Agrawal, Mahdi Zamani, and Dan Boneh. Zether: Towards privacy in a smart contract world. In *Financial Cryptography and Data Security - FC 2020*, volume 12059, pages 423–443. Springer, 2020.
- [CCS08] Jan Camenisch, Rafik Chaabouni, and Abhi Shelat. Efficient protocols for set membership and range proofs. In Advances in Cryptology - ASIACRYPT 2008, volume 5350 of Lecture Notes in Computer Science, pages 234–252. Springer, 2008.
- [CKLR21] Geoffroy Couteau, Michael Kloo
 ß, Huang Lin, and Michael Reichle. Efficient range proofs with transparent setup from bounded integer commitments. In Advances in Cryptology - EUROCRYPT 2021, volume 12698 of LNCS, pages 247–277. Springer, 2021.
- [FMMO19] Prastudy Fauzi, Sarah Meiklejohn, Rebekah Mercer, and Claudio Orlandi. Quisquis: A new design for anonymous cryptocurrencies. In Advances in Cryptology - ASIACRYPT 2019, volume 11921 of Lecture Notes in Computer Science, pages 649–678. Springer, 2019.
- [NVV18] Neha Narula, Willy Vasquez, and Madars Virza. zkledger: Privacy-preserving auditing for distributed ledgers. In 15th USENIX Symposium on Networked Systems Design and Implementation, NSDI 2018, pages 65–80, 2018.

Outline

- 2 Framework of Auditable DCP System
- 3 An Efficient Instantiation: PGC
- 4 Experimental Results

- Formal Security Model
- Key Reuse vs. Key Separation
- Generic Framework and Security Proof

Outline

Background

- 2 Framework of Auditable DCP System
- 3 An Efficient Instantiation: PGC
- 4 Experimental Results

5 Summary

• Formal Security Model

- Key Reuse vs. Key Separation
- Generic Framework and Security Proof

Formal Security Model (Oracles)

corrupt honest accounts

direct honest accounts to conduct ctx

ask honest accounts to reveal ctx

inject ctx from corrupted accounts

Formal Security Model: Authenticity

$$\mathsf{Adv}_{\mathcal{A}}(\lambda) = \Pr\left[\begin{array}{c} \mathsf{VerifyCTx}(\mathsf{ctx}^*) = 1 \land \\ pk_s^* \in T_{\mathsf{honest}} \land \ \mathsf{ctx}^* \notin T_{\mathsf{ctx}}(pk_s^*) \end{array} : \begin{array}{c} pp \leftarrow \mathsf{Setup}(\lambda); \\ \mathsf{ctx}^* \leftarrow \mathcal{A}^{\mathcal{O}}(pp); \end{array}\right].$$

Formal Security Model: Confidentiality

$$\mathsf{Adv}_{\mathcal{A}}(\lambda) = \Pr \begin{bmatrix} pp \leftarrow \mathsf{Setup}(\lambda); \\ (state, pk_s^*, pk_r^*, v_0, v_1) \leftarrow \mathcal{A}_1^{\mathcal{O}}(pp); \\ \beta = \beta': & \beta \xleftarrow{\mathsf{R}} \{0, 1\}; \\ \mathsf{ctx}^* \leftarrow \mathsf{CreateCTx}(sk_s^*, pk_s^*, pk_r^*, v_\beta); \\ \beta' \leftarrow \mathcal{A}_2^{\mathcal{O}}(state, \mathsf{ctx}^*); \end{bmatrix} - \frac{1}{2}.$$

To prevent trivial attacks, \mathcal{A} is subject to the following restrictions:

- pk_s^*, pk_r^* chosen by \mathcal{A} are required to be honest accounts, and \mathcal{A} is not allowed to make corrupt queries to either pk_s^* or pk_r^* ;
- 2 \mathcal{A} is not allowed to make reveal query to ctx^{*}.
- let v_{sum} (with initial value 0) be the dynamic sum of the transfer amounts in \mathcal{O}_{trans} queries related to pk_s^* after ctx^{*}, both $\tilde{v}_s v_0 v_{sum}$ and $\tilde{v}_s v_1 v_{sum}$ must lie in \mathcal{V} .

/ 57

Restrictions 1 and 2 prevents trivial attack by decryption, restrictions 3 prevent inferring β by testing whether overdraft happens.

Formal Security Model: Soundness

$$\mathsf{Adv}_{\mathcal{A}}(\lambda) = \Pr\left[\begin{array}{c} \mathsf{VerifyCTx}(\mathsf{ctx}^*) = 1\\ \wedge \mathsf{memo}^* \notin L_{\mathsf{valid}} \end{array} : \begin{array}{c} pp \leftarrow \mathsf{Setup}(\lambda);\\ \mathsf{ctx}^* \leftarrow \mathcal{A}^{\mathcal{O}}(pp); \end{array}\right].$$

Here, $ctx^* = (sn^*, memo^*, aux^*)$.

Outline

- 2 Framework of Auditable DCP System
- 3 An Efficient Instantiation: PGC
- 4 Experimental Results

Backup

- Formal Security Model
- Key Reuse vs. Key Separation
- Generic Framework and Security Proof

A Subtle Point: Key reuse vs. Key Separation

We employ PKE and SIG simutaneously to secure auditable DCP.

key separation $(pk_1, sk_1), (pk_2, sk_2)$

Pros

• off-the-shelf & easy to analyze

Cons

- double key size
- tricky address derivation

Pros

• greatly simplify DCP system

key reuse

(pk, sk)

50 / 57

more efficient

Cons

case-tailored design

We choose Integrated Signature and Encryption (ISE): one keypair for both encryption and sign, while IND-CPA and EUF-CMA hold in the joint sense

Outline

- 2 Framework of Auditable DCP System
- 3 An Efficient Instantiation: PGC
- 4 Experimental Results

Backup

- Formal Security Model
- Key Reuse vs. Key Separation
- Generic Framework and Security Proof

Generic Construction of Auditable DCP: Building blocks

 $\mathsf{ISE} = (\mathsf{Setup}, \mathsf{KeyGen}, \mathsf{Sign}, \mathsf{Verify}, \mathsf{Enc}, \mathsf{Dec})$

- PKE component is additively homomorphic over \mathbb{Z}_p
- Fix $\mathit{pp},$ KeyGen naturally induces an \mathcal{NP} relation:

$$\mathsf{R}_{\mathsf{key}} = \{(pk, sk) : \exists r \text{ s.t. } (pk, sk) = \mathsf{KeyGen}(pp; r)\}$$

NIZK = (Setup, CRSGen, Prove, Verify)

- adaptive soundness
- adaptive ZK

Algorithms of Auditable DCP: 1/4

 $\mathsf{Setup}(1^\lambda):$ generate pp for the auditable DCP system

- $pp_{\mathsf{ise}} \leftarrow \mathsf{ISE}.\mathsf{Setup}(1^{\lambda}), \ pp_{\mathsf{nizk}} \leftarrow \mathsf{NIZK}.\mathsf{Setup}(1^{\lambda}), \ crs \leftarrow \mathsf{NIZK}.\mathsf{CRSGen}(pp_{\mathsf{nizk}})$
- output $pp = (pp_{\text{ise}}, pp_{\text{nizk}}, crs)$, set $\mathcal{V} = [0, v_{\text{max}}]$

 $CreateAcct(\tilde{v}, sn)$: create an account

- $(pk, sk) \leftarrow \mathsf{ISE}.\mathsf{KeyGen}(pp_\mathsf{ise}), \ pk \ \mathsf{serves} \ \mathsf{as} \ \mathsf{account} \ \mathsf{address}$
- $\tilde{C} \leftarrow \mathsf{ISE}.\mathsf{Enc}(pk, \tilde{v}; r)$

RevealBalance (sk, \tilde{C}) : reveal the balance of an account

• $\tilde{m} \leftarrow \mathsf{ISE}.\mathsf{Dec}(sk, \tilde{C})$

Algorithms of Auditable DCP: 2/4

 $CreateCTx(sk_s, pk_s, v, pk_r)$: transfer v coins from account pk_s to account pk_r .

- $C_s \leftarrow \mathsf{ISE}.\mathsf{Enc}(pk_s, v; r_1), \ C_r \leftarrow \mathsf{ISE}.\mathsf{Enc}(pk_r, v; r_2), \ \mathsf{memo} = (pk_s, pk_r, C_s, C_r).$
- run NIZK.Prove with witness (sk_s, r_1, r_2, v) to generate a proof π_{valid} for memo = $(pk_s, pk_r, C_s, C_r) \in L_{\text{valid}} \mapsto L_{\text{equal}} \wedge L_{\text{right}} \wedge L_{\text{solvent}}$

$$\begin{split} L_{\mathsf{equal}} &= \{(pk_s, pk_r, C_s, C_r) \mid \exists r_1, r_2, v \text{ s.t.} \\ C_s &= \mathsf{ISE}.\mathsf{Enc}(pk_s, v; r_1) \land C_r = \mathsf{ISE}.\mathsf{Enc}(pk_r, v; r_2) \} \\ L_{\mathsf{right}} &= \{(pk_s, C_s) \mid \exists r_1, v \text{ s.t. } C_s = \mathsf{ISE}.\mathsf{Enc}(pk_s, v; r_1) \land v \in \mathcal{V} \} \\ L_{\mathsf{solvent}} &= \{(pk_s, \tilde{C}_s, C_s) \mid \exists sk_1 \text{ s.t. } (pk_s, sk_s) \in \mathsf{R}_{\mathsf{key}} \land \mathsf{ISE}.\mathsf{Dec}(sk_s, \tilde{C}_s - C_s) \in \mathcal{V} \} \end{split}$$

- $\sigma \leftarrow \mathsf{ISE}.\mathsf{Sign}(sk_s, (\mathsf{sn}, \mathsf{memo}, \pi_{\mathsf{valid}}))$
- output $ctx = (sn, memo, \pi_{valid}, \sigma)$.

Algorithms of Auditable DCP: 3/4

VerifyCTx(ctx): check if ctx is valid.

- parse ctx = (sn, memo, π_{valid}, σ), memo = (pk_s, pk_r, C_s, C_r):
 - **(**) check if sn is a fresh serial number of pk_s (inspect the blockchain);
 - 2 check if ISE.Verify $(pk_s, (sn, memo, \pi_{valid}), \sigma) = 1;$
 - check if NIZK.Verify $(crs, memo, \pi_{valid}) = 1$.
- ctx is recorded on the ledger if validity test passes or discarded otherwise.

Update(ctx): sender updates his balance $\tilde{C}_s = \tilde{C}_s - C_s$ and increments sn, receiver updates his balance $\tilde{C}_r = \tilde{C}_r + C_r$.

Algorithms of Auditable DCP: 4/4

JustifyCTx($pk, sk, \{ \mathsf{ctx}_i \}_{i=1}^n, f \}$: user pk runs NIZK.Prove with witness sk to generate a zero-knowledge proof π_f for $f(\{\mathsf{ctx}_i\}_{i=1}^n) = 1$.

AuditCTx(pk, {ctx_i} $_{i=1}^{n}$, f, π_f): auditor runs NIZK.Verify to check if π_f is valid.

Theorem: Assuming the security of ISE and NIZK, our CTx framework is secure.

- $\bullet\,$ security of ISE's signature component $\Rightarrow\,$ authenticity
- $\bullet\,$ security of ISE's PKE component + adaptive ZK of NIZK $\Rightarrow\,$ confidentiality
- $\bullet\,$ adaptive soundness of NIZK $\Rightarrow\,$ soundness

