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Leakage-Resilient Cryptography

F sk

x

F(sk, x)

Sign Dec

leakage proof

black-box

leakage prone

leakage attacks (since 1996) invalidate this idealized assumption

leak(sk)

Leakage-Resilient Cryptography: provably secure against all leakage attacks
captured by leakage model.
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Leakage Models

Various leakage models in the literature, differing in their specifications of leakage
source/functions/behaviors:

sk

f(s̃k)

Only computation leaks model: [MR04]...
Bounded leakage model:
[AGV09, KV09, NS09, ADW09, ADN+10, QL13, CQX18]...
Auxiliary input model: [DKL09, DGK+10]...
Continual leakage model: [BKKV10, DHLW10]...
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Bounded Leakage Model
In this work, we focus on the most basic bounded leakage model

conceptually simple yet general enough
results in BLM used as building blocks for leakage-resilient schemes in more
complex leakage models

A template of BLM

F sk

fi ∈ L

fi(sk)

∑
|fi(sk)| < ℓ ≤ |sk|

leakage ratio ρ = ℓ/|sk| ; 1− o(1) is optimal
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Leakage-Resilient Workhorse Primitives

In the last two decades, a broad range of LR cryptographic schemes have been
proposed.

But, several interesting problems are still open around lower-level, workhorse
primitives, such as SKE, PKE and Signature
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Leakage-Resilient SKE

LR SKE can be reduced to constructing LR wPRF
Pietrzak [Pie09], Dodis and Yu [DY13]: any PRF is already leakage-resilient
against ℓ = O(logλ)-bit leakage
Hazay et al. [HLWW13]: OWF ⇒ LR wPRF with leakage rate O(logλ)/|sk|

Is there a generic construction of LR wPRF with optimal leakage rate?
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Leakage-Resilient PKE

Existing LR PKE are based on either specific assumptions such as LWE [AGV09]
and QR [BG10], or more generally the hash proof system [NS09]

Whether the classic construction of PKE based on TDF/TDR can be made LR? Is
there a generic construction of LR PKE?

CCA security vs. leakage-resilience (dual)
CCA: A learns sk via a specific family of functions (tie to Dec(sk, ·)) with
unbounded output length
LR: A learns sk via arbitrary functions with bounded output length

Is there a connection between CCA security and LR?

10 / 55



Leakage-Resilient Signature

Challenging problem: fully leakage-resilience – EUF-CMA remains in the presence
of both secret key and random coins leakage

when Sign is deterministic or public-coin: standard LR ⇒ FLR

All the known FLR Sigs [BSW11, MTVY11, LLW11, GJS11] are randomized and
secret-coin.
Boyle et al. [BSW11] left the open problem

Do there exist deterministic or public-coin LR signatures?

Bonus: such kind of Sig remain secure even all the random coins are revealed
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This Work

Our goal: Generic constructions of LR encryption and signature with optimal
leakage rate (in the bounded leakage model)

Our major insight

Various kinds of
Puncturable PRFs

Leakage-Resilienceobfuscated street
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Puncturable PRF [SW14]

(pp, k)← Gen(λ)

X

Y
F (k, x)

kx∗ ← Punc(k, x∗)

Eval(kx∗ , x) = F (k, x) for x ̸= x∗
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Selective Puncturable PRF

x∗ (pp, k)← Gen(λ)
kx∗ ← Punc(k, x∗)
y∗0 ← F (k, x∗)

y∗1
R←− Y

β
R←− {0, 1}

x∗, kx∗ , y∗β

β =?

directly implied by GGM-PRF ⇐ OWF
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Weak Puncturable PRF

(pp, k)← Gen(λ)
x∗

R←− X
kx∗ ← Punc(k, x∗)
y∗0 ← F (k, x∗)

y∗1
R←− Y

β
R←− {0, 1}

pp, x∗, kx∗ , y∗β

β =?

Theorem: sPPRF ⇔ wPPRF
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Indistinguishability Obfuscation [BGI+12]
A uniform PPT machine iO is called an indistinguishability obfuscator if:

Preserving Functionality: ∀C ∈ Cλ, ∀x ∈ {0, 1}∗

Pr[C ′(x) = C(x) : C ′ ← iO(C)] = 1

Indistinguishability of Obfuscation
∀ PPT adversaries (S,D), ∃ a negl. function α:
Pr[∀x,C0(x) = C1(x) : (C0, C1, aux)← S(λ)] ≥ 1− α(λ) ⇒

|Pr[D(aux, iO(C0)) = 1]− Pr[D(aux, iO(C1)) = 1]| ≤ α(λ)

C0

iO(C0)

iO

C1

iO(C1)

iO

≡

≈c
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Approaches towards Leakage Resilience

F sk

R

Assumptions

f

f(sk)

Technical hurdle: a seemingly paradox
In order to answer arbitrary leakage queries, it seems R must know sk

Typically R does not know sk since the challenge instance is embedded in it
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Approach I

Rely on leakage-resilient assumptions, i.e., the assumption still holds even in the
presence of partial leakage of secret

F sk

R

Assumptions

leakage-resilient

f

f(sk)

Katz and Vaikuntanathan [KV09]: UOWHF is LR-OW + ss-NIZK ⇒ LR SIG
Akavia et al. [AGV09]: normal pk ≈c lossy pk even in the presence of sk
leakage ⇒ Regev PKE is LR
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Approach II

detached strategy + leakage-resilient assumptions/facts

F sk c

Assumptions

F sk ĉ

≈c

f

f(sk)

Naor and Segev [NS09]: SMP ⇒ c ≈c ĉ; k ← Ext(sk, ĉ)
leftover hash lemma (leakage-resilient fact)

Dodis et al. [DGK+10]: DDH ⇒ c ≈c ĉ; k ← hcĉ(sk) w.r.t. f (auxliary-input
model)

Goldreich-Levin theorem (leakage-resilient assumption)
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≈c

f

f(sk)

Naor and Segev [NS09]: SMP ⇒ c ≈c ĉ; k ← Ext(sk, ĉ)
leftover hash lemma (leakage-resilient fact)
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A common theme of the two above main approaches
R always try to simulate leakage oracle perfectly, i.e., answering leakage
queries with real secret key.

To do so, we have to either rely on LR assumptions or resort to sophisticated
design with specific structure.
It is interesting to investigate the possibility of

simulate leakage oracle computationally, i.e., answering leakage queries with
simulated leakage

This might lend new techniques to address the unsolved problems in LRC.

22 / 55



Dachman-Soled et al. [DGL+16] discovered powerful applications of iO to LRC
Sahai-Waters PKE ; leakage resilient

23 / 55



Background: Sahai-Waters KEM

Ingredients: iO, PRG G : {0, 1}λ → {0, 1}2λ, weak puncturable PRF
F : SK × {0, 1}2λ → Y

Gen(λ): pick sk
R←− SK, pk ← iO(Encaps)

Encaps(pk; r): (c, k)← pk(r)

Decaps(sk, c): k ← F (sk, c)

Encaps
Constants: PPRF key sk

Input: randomness r ∈ {0, 1}λ

1 compute x← G(r); output c = x, k ← F (sk, x)

24 / 55



Why Sahai-Waters is not Leakage-Resilient?

The proof uses “punctured programs” technique and security is reduced to the
weak pseudorandomness of punctured PRF

pk ← iO(Encaps(sk))⇝ pk ← iO(Encaps∗(skx∗))

session key k∗ ← y∗ ← F (sk, x∗), where x∗
R←− {0, 1}2λ

The sources for non-leakage-resilient
Construction perspective: the information of y∗ could be leaked via leakage
queries on sk, and thus may not be random anymore in A’s view.
Proof perspective: in some hybrid game, R only knows skx∗ , and thus unable
to handle arbitrary leakage queries.

Dachman-Soled et al. [DGL+16] made Sahai-Waters KEM leakage-resilient by
using iO twice.
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Abstract and Generalize the Core Idea

R

sk

?

skx∗ , y∗

C

C ′

≡

iO(C)

iO(C ′)

≈c
iO

f(iO(C))

f(iO(C ′))

≈c
f is efficient
compostion

lemma

simulate leakage in a computationally indistinguishable manner
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Key Observation

Can we push the idea to extreme?

Dachman-Soled et al. [DGL+16]: Sahai-Waters KEM can be made LR by
setting sk as an obfuscated program
Chen et al. [CZ14]: the essence of Sahai-Waters KEM – iO bootstraps
Punc-PRF into Punc-“publicly evaluable” PRF

These two results suggest:

iO(Punc-PEPRF) ; LR PEPRF
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(Puncturable) Publicly Evaluable PRF

(pk, sk)← Gen(λ)

X

L

W

Y

Samp(λ)

F (sk, x)

Priv(sk, x)

Pub(pk, x, w)

skx∗ ← Punc(sk, x∗)
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Security of (Puncturable) Publicly Evaluable PRF

(pk, sk)← Gen(λ)
pk (x∗, w∗)← Samp(λ)

skx∗ ← Punc(sk, x∗)
y∗0 ← F (sk, x∗)

y∗1
R←− Y

β
R←− {0, 1}

x∗, y∗β, skx∗

β =?

β′
|Pr[β = β′]− 1/2| ≤ negl(λ)

fi

fi(sk)
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LR-PEPRF from Punc-PEPRF
Idea: Obfuscate-and-Extract

(pk, sk)← Gen(λ)

X

L

W

Y

Samp(λ)

F (sk, x)

Priv(sk, x)

Pub(pk, x, w)

S

Ext Z

ŝk

Priv
Constants: Punc-PEPRF secret key sk

Input: x̂ = (x, s)

1 output z ← Ext(F (sk, x), s)

iO

LR PEPRF F̂ from X × S to Z: Ext(F (sk, x), s)
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Theorem: The above PEPRF F̂ is leakage-resilient under appropriate parameter
setting.

Game 0. (the original game) ŝk ← iO(Priv)
Game 1. ŝk ← iO(Priv∗), where y∗ ← F (sk, x∗)

Priv∗

Constants: Punc-PEPRF punctured key skx∗ , x∗ and y∗

Input: x̂ = (x, s)

1 If x = x∗, output Ext(y∗, s). Else, output Ext(F (skx∗ , x), s).

Game 2. y∗
R←− Y

Priv ≡ Priv∗ + iO ⇒ Game 0 ≈c Game 1
punc-PEPRF ⇒ Game 1 ≈c Game 2
randomness extractor ⇒ z∗ ← Ext(y∗, s∗) ≈s UZ
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Constructions of Punc-PEPRF

iO(Punc-PEPRF)⇝ LR-PEPRF⇒ LR-KEM

How to construct Punc-PEPRF?

wPPRF+PRG+iO (a slight modification of SW KEM)
clarify and encompass Dachman-Soled et al’s construction

Punc-TDF ⇐ correlated-product TDF [RS09]
PTDF can be viewed as a special type of adaptive TDF – Oinv can be
instantiated succinctly

Punc-EHPS ⇐ derivable EHPS
“derivable” is a mild property that satisfied by all the known realizations of
EHPS [Wee10]
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Significance

Matsuda and Hanaoka [MH15]: Punc-KEM – capture a common pattern towards
CCA security

Punc-PEPRF ⇒ Punc-KEM with perfect punctured decapsulation soundness

CCA security obtained via punctured road can be converted to Leakage-Resilience
in a non-black-box manner via iO

PKE via CP-TDF
PKE via EHPS

34 / 55



Outline

1 Background

2 Motivation

3 Primitives

4 Our Framework Towards Leakage-Resilience
Leakage-Resilient PKE
Leakage-Resilient SKE
Leakage-Resilient Signature

5 Achieving Optimal Leakage Rate

35 / 55



Extension to the Symmetric Setting

iO(weak-Punc-PRF)⇝ LR-weak-PRF⇒ LR-SKE

(pp, sk)← Gen(λ)

X Y

S

Ext Z

F (sk, x)

ŝk

Priv
Constants: wPPRF secret key sk

Input: x̂ = (x, s)

1 output z ← Ext(F (sk, x), s)

iO

LR wPRF F̂ from X × S to Z: Ext(F (sk, x), s)
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Review of Sahai-Waters Signature

Essence of Sahai-Waters Signature: iO makes PRF-based MAC publicly verifiable

Gen(λ): pick k
R←− K for sPPRF F : K ×M → Y , pick a OWF g : Y → Z; set

sk ← k, vk ← iO(Verify).
Sign(sk,m): output σ ← F (k,m).
Verify(vk,m, σ): output vk(m,σ).

Verify
Constants: sPPRF key k

Input: message m and signature σ

1 output g(σ) =?g(F (k,m)).
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Proof of Selective Security

Theorem: Sahai-Waters signature is selectively secure.

Game 0. (original game) vk ← iO(Verify).
Game 1. vk ← iO(Verify∗), here z∗ ← g(σ∗), σ∗ ← F (k,m∗).

Verify∗

Constants: punctured sPPRF key km∗ and z∗

Input: message m and signature σ

1 If m = m∗, output g(σ) =?z∗.
2 Else, output g(σ) =?g(F (km∗ ,m)).

Game 2. σ∗ ← Y .

Verify ≡ Verify∗ + iO ⇒ Game 0 ≈c Game 1
sPPRF ⇒ Game 1 ≈c Game 2
OWF ⇒ σ∗ is unpredictable in Game 2
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How to make Sahai-Waters’s signature Leakage-Resilient?

Technical hurdle: how to handle leakage queries?
1 express signing algorithm as a program and obfuscate the program as sk

2 simulate leakage queries with function-equivalent key – an obfuscation of a
program build from km∗ and σ∗

Problems
Construction perspective: leakage queries leak the information of σ∗ (the
preimage of z∗) ⇒ unable to reduce unforgeability to one-wayness of g
Proof perspective: R does not know σ∗

Our solution: using LR OWF instead of standard OWF
In the final security game, R can translate leakage queries on secret key to
those on σ∗.
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LR OWF + sPPRF + iO ⇒ deterministic LR SIG (selective)

How to achieve adaptive security?

Using Extremely Lossy Function [Zha16] hash the message before signing:
deterministic but relying on exponential hardness assumption
Applying “prefix-guessing technique” [RW14]: randomized but public-coin

So far the best solution to the open problem posed by Boyle et al. [BSW11]
(Eurocrypt’ 11)
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How to achieve optimal leakage rate?

The leakage rate of our basic constructions is low
secret key is an obfuscated program ; large size
the maximum leakage amount ≤ log2 |Y |

Can we achieve optimal leakage rate?
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Dachman-Soled et al.’s Approach

Secret key – a secret obfuscated program (like a gun that must be kept secretly)

Decompose the secret obfuscated program
make the logic part public
set a trigger device inside the public program and use trigger as the secret key
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The Case of LR-PEPRF from Punc-PEPRF

Priv
Constants: Punc-PEPRF secret key sk

Input: x̂ = (x, s)

1 Output z ← Ext(F (sk, x), s)

Modification: ct∗ ← Enc(ke, 0n), n = log |Y |; pick a CRHF h, set h(ct∗) = t∗

ct∗ is set as secret key, obfuscated program is made public.

Priv
Constants: Punc-PEPRF secret key sk, t∗

Input: ct, x̂ = (x, s)

1 If h(ct) ̸= t∗, output ⊥. Else, output z ← Ext(F (sk, x), s).

greatly shrink the size of secret key: an obfuscated program ; a ciphertext
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Security Proof

Game 0. Ceval ← iO(Priv) as part of pk, ct∗ ← SKE.Enc(ke, 0n) as sk.
Game 1. ct∗ ← SKE.Enc(ke, y∗), where y∗ ← F (sk, x∗)

Game 2. Ceval ← iO(Priv∗)
Game 3. y∗

R←− Y

Priv∗

Constants: Punc-PEPRF punctured secret key skx∗ , ke, t∗

Input: ct, x̂ = (x, s)

1 If h(ct) ̸= t∗, output ⊥.
2 Else if x = x∗, set y∗ ← SKE.Dec(ke, ct), output z ← Ext(y∗, s).
3 Otherwise, output z ← Ext(F (sk, x), s).

|t∗|+ ℓ ≤ |Y |, |Y | ≤ |ct∗| and ρ = ℓ/|ct∗|
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Analysis

To achieve optimal leakage rate
h must be compressing to decrease |t∗|, otherwise t∗ (hardwired in public
program) will reveal too much information of y∗ ← F (sk, x∗)

The choice may make the programs in Game 1 and Game 2 have
differing-inputs

a collision: ct′ ̸= ct∗ but h(ct′) = t∗ = h(ct∗) where ct′ decrypts to y′ ̸= y∗

; one have to resort to differing-input obfuscation, which is highly suspicious.
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Our Technique

Idea: replace CRHF with lossy function
Injective mode: ensure Priv and Priv∗ are equivalent ; safely use iO
Lossy mode: switch to lossy mode to greatly reduce |t∗| ; t∗ only leaks very
little information of y∗,

By appropriate parameter choice, ρ = 1− o(1)

This settles the open problem posed by Dachman-Soled et al. [DGL+16]: achieving
optimal leakage ratio without resorting to diO

This trick might be instructive elsewhere for avoiding differing-input obfuscation
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Conclusion

We develop a framework for building leakage-resilient cryptography in BLM from
punc-primitives and iO.
Major insight: various punc-PRFs can achieve LR on an obfuscated street

1 wPPRF+iO ⇝ LR wPRF ⇒ LR-SKE
2 punc-PEPRF+iO ⇝ LR PEPRF ⇒ LR-PKE

as a building block of independent interest, we realize punc-PEPRF from newly
introduced punc-objects such as PTDFs and PEHPS.

3 sPPRF+ LR-OWF + iO ⇒ the first LR-public-coin Sig
solve the open problem posed by Boyle et al. (Eurocrypt 2011)

4 By further assuming lossy functions, all the above constructions achieve
optimal leakage rate – not known to be achievable for wPRF, PEPRF and
public-coin Sig before.

solve the open problem posed by Dachman-Soled et al. (PKC 2016, JOC 2018)
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Conclusion

wPPRF

LR-wPRF

LR-SKE

iO

sPPRF+LR-OWF

LR-SIG

iO

PPEPRF

LR-PEPRF

LR-PKE

iO

wPPRF+PRG+iO PTDF

CP-TDF

PEHPS

DEHPS
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Thanks for Your Attention!

Any Questions?
https://eprint.iacr.org/2018/781
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