
PGC: Decentralized Confidential Payment System with
Auditability

Yu Chen Shandong University
Xuecheng Ma SKLOIS, CAS
Cong Tang pgc.info
Man Ho Au The University of Hong Kong

ESORICS 2020
http://eprint.iacr.org/2019/319

https://github.com/yuchen1024/libPGC

1 / 43

http://eprint.iacr.org/2019/319
https://github.com/yuchen1024/libPGC

Outline

1 Background

2 Framework of Auditable DCP System

3 An Efficient Instantiation: PGC

4 Summary

2 / 43

Outline

1 Background

2 Framework of Auditable DCP System

3 An Efficient Instantiation: PGC

4 Summary

3 / 43

Privacy in Payment System

1024

no one can figure out the transfer amount

no one can identify the “true” sender and recipient

4 / 43

Auditablity in Payment System

tx

tx

validity check

audit

f({txi}) ?
= 1

f denotes the audit predicate that checks if {txi} satisfy some specified policy

5 / 43

Centralized Payment System

txs are kept on a private ledger only known to the center
the center is in charge of validity check as well as protecting privacy and
conducting audit

6 / 43

Decentralized Payment System (Blockchain-based Cryptocurrencies)

txs are kept on a global distributed public ledger — the blockchain
to ensure public verifiability, Bitcoin and Ethereum simply expose all tx
information in public ; no privacy

7 / 43

Motivation

Privacy and Auditability are crucial in any financial system, we want to know:

In the decentralized setting, can we have the good of both?

Confidentiality Anonymity

Auditability

double-edged sword

co-exist plausiable deniability

In this work, we trade anonymity for auditablity, propose the first

auditable decentralized confidential payment (DCP) system
in the account-based model

8 / 43

Outline

1 Background

2 Framework of Auditable DCP System

3 An Efficient Instantiation: PGC

4 Summary

9 / 43

Algorithms of Auditable DCP (Account-based Model)
Setup(1λ)→ (pp)

CreateAccount(ṽ1, sn1)

[pk1, sk1, C̃1, sn1]

CreateAccount(ṽ2, sn2)

[pk2, sk2, C̃2, sn2]

CreateCTx(sk1, pk1, pk2, v)→ ctx

ctx

VerifyCTx(ctx) ?
= 1

increase sn1
update C̃1 update C̃2

AuditCTx(f, ctx, π)→ 0/1
sn,memo = (pk1, pk2, C), aux

10 / 43

Desired Functionality and Security

Verifiability validity of txs are publicly verifiable

Authenticity only the sender can generate txs,
nobody else can forge

Confidentiality except the sender and receiver,
nobody learns the transfer amount

Soundness even the sender cannot generate an
illegal tx that passes validity check

Auditability particpants cannot cheat and
audit is privacy-preserving

11 / 43

Formal Security Model (Oracles)

OregH

register honest accounts

OextH corrupt honest accounts

Otrans direct honest accounts to conduct ctx

Oreveal ask honest accounts to reveal ctx

OregC

register corrupted accounts

Oinject inject ctx from corrupted accounts
12 / 43

Formal Security Model: Authenticity

AdvA(λ) = Pr
[

VerifyCTx(ctx∗) = 1 ∧
pk∗s ∈ Thonest ∧ ctx∗ /∈ Tctx(pk∗s)

:
pp← Setup(λ);
ctx∗ ← AO(pp);

]
.

13 / 43

Formal Security Model: Confidentiality

AdvA(λ) = Pr

β = β′ :

pp← Setup(λ);
(state, pk∗s , pk

∗
r , v0, v1)← AO

1 (pp);

β
R←− {0, 1};

ctx∗ ← CreateCTx(sk∗s , pk∗s , pk∗r , vβ);
β′ ← AO

2 (state, ctx∗);

− 1

2
.

To prevent trivial attacks, A is subject to the following restrictions:
1 pk∗s , pk

∗
r chosen by A are required to be honest accounts, and A is not allowed to

make corrupt queries to either pk∗s or pk∗r ;
2 A is not allowed to make reveal query to ctx∗.
3 let vsum (with initial value 0) be the dynamic sum of the transfer amounts in
Otrans queries related to pk∗s after ctx∗, both ṽs − v0 − vsum and ṽs − v1 − vsum
must lie in V.

Restrictions 1 and 2 prevents trivial attack by decryption, restrictions 3 prevent
inferring β by testing whether overdraft happens.

14 / 43

Formal Security Model: Soundness

AdvA(λ) = Pr
[

VerifyCTx(ctx∗) = 1
∧ memo∗ /∈ Lvalid

:
pp← Setup(λ);
ctx∗ ← AO(pp);

]
.

Here, ctx∗ = (sn∗,memo∗, aux∗).

15 / 43

Choice of Building Blocks

Verifiability

Authenticity

Confidentiality

Soundness

Auditability

additively HE

eliminate out-of-band transfer

Signature

NIZK

16 / 43

A Subtle Point: Key reuse vs. Key Separation

We employ PKE and SIG simutaneously to secure auditable DCP.

key separation
(pk1, sk1), (pk2, sk2)

Pros
off-the-shelf & easy to analyze

Cons
double key size
tricky address derivation

key reuse
(pk, sk)

Pros
greatly simplify DCP system
more efficient

Cons
case-tailored design

We choose Integrated Signature and Encryption (ISE): one keypair for both encryption
and sign, while IND-CPA and EUF-CMA hold in the joint sense

17 / 43

Generic Construction of Auditable DCP: Building blocks

ISE = (Setup,KeyGen,Sign,Verify,Enc,Dec)
PKE component is additively homomorphic over Zp

Fix pp, KeyGen naturally induces an NP relation:

Rkey = {(pk, sk) : ∃r s.t. (pk, sk) = KeyGen(pp; r)}

NIZK = (Setup,CRSGen,Prove,Verify)
adaptive soundness
adaptive ZK

18 / 43

Algorithms of Auditable DCP: 1/4

Setup(1λ): generate pp for the auditable DCP system
ppise ← ISE.Setup(1λ), ppnizk ← NIZK.Setup(1λ), crs← NIZK.CRSGen(ppnizk)

output pp = (ppise, ppnizk, crs), set V = [0, vmax]

CreateAcct(ṽ, sn): create an account
(pk, sk)← ISE.KeyGen(ppise), pk serves as account address
C̃ ← ISE.Enc(pk, ṽ; r)

RevealBalance(sk, C̃): reveal the balance of an account
m̃← ISE.Dec(sk, C̃)

19 / 43

Algorithms of Auditable DCP: 2/4

CreateCTx(sks, pks, v, pkr): transfer v coins from account pks to account pkr.
Cs ← ISE.Enc(pks, v; r1), Cr ← ISE.Enc(pkr, v; r2), memo = (pks, pkr, Cs, Cr).
run NIZK.Prove with witness (sks, r1, r2, v) to generate a proof πcorrect for
memo = (pks, pkr, Cs, Cr) ∈ Lvalid 7→ Lequal ∧ Lright ∧ Lsolvent

Lequal = {(pks, pkr, Cs, Cr) | ∃r1, r2, v s.t.
Cs = ISE.Enc(pks, v; r1) ∧ Cr = ISE.Enc(pkr, v; r2)}

Lright = {(pks, Cs) | ∃r1, v s.t. Cs = ISE.Enc(pks, v; r1) ∧ v ∈ V}
Lsolvent = {(pks, C̃s, Cs) | ∃sk1 s.t. (pks, sks) ∈ Rkey ∧ ISE.Dec(sks, C̃s − Cs) ∈ V}

σ ← ISE.Sign(sks, (sn,memo, πvalid))

output ctx = (sn,memo, πvalid, σ).

20 / 43

Algorithms of Auditable DCP: 3/4

sn pks, pkr, Cs, Cr πequal πright πsolvent σ

memo πvalid

signed message

aux
Figure: Data structure of confidential transaction.

VerifyCTx(ctx): check if ctx is valid.
parse ctx = (sn,memo, πvalid, σ), memo = (pks, pkr, Cs, Cr):

1 check if sn is a fresh serial number of pks (inspect the blockchain);
2 check if ISE.Verify(pks, (sn,memo, πvalid), σ) = 1;
3 check if NIZK.Verify(crs,memo, πvalid) = 1.

ctx is recorded on the ledger if validity test passes or discarded otherwise.
Update(ctx): sender updates his balance C̃s = C̃s − Cs and increments sn, receiver
updates his balance C̃r = C̃r + Cr.

21 / 43

Algorithms of Auditable DCP: 4/4

JustifyCTx(pk, sk, {ctxi}ni=1, f): user pk runs NIZK.Prove with witness sk to generate
a zero-knowledge proof πf for f({ctxi}ni=1) = 1.

flimit :
∑n

i=1 vi < ℓ
anti-money laundering

ctx1

ctxi

ctxn

frate : v1/v2 = ρ
tax payment

ctx1 ctx2

fopen : v = v∗

selective disclosure

ctx

AuditCTx(pk, {ctxi}ni=1, f, πf): auditor runs NIZK.Verify to check if πf is valid.
22 / 43

Outline

1 Background

2 Framework of Auditable DCP System

3 An Efficient Instantiation: PGC

4 Summary

23 / 43

Disciplines in Mind

While the auditbale DCP framework is intuitive, secure and efficient instantiation
requires clever choice and design of building blocks.

efficient efficient ctx generation/verification
compact ctx size

transparent setup system does not require a trusted setup
design case-tailored NIZK

simple & modular build the system from reusable gadgets
can be reused in other places

24 / 43

Encryption Component of ISE

ElGamal

gr pkrgm

Bulletproofs

state-of-the-art

oblivious
td

grhmgrhm

Pedersen
commitment

Σ protocol

consistency
proof

Quisquis’s approach [FMMO19]
bring extra bridging cost

Σ-Bullet

integration of Bulletproof
and Sigma protocol

Zether’s approach [BAZB20]
require dissecting Bulletproof, not modular

25 / 43

Encryption Component of ISE

ElGamal

gr pkrgm

Bulletproofs

state-of-the-art

oblivious
td

grhmgrhm

Pedersen
commitment

Σ protocol

consistency
proof

Quisquis’s approach [FMMO19]
bring extra bridging cost

Σ-Bullet

integration of Bulletproof
and Sigma protocol

Zether’s approach [BAZB20]
require dissecting Bulletproof, not modular

25 / 43

Encryption Component of ISE

ElGamal

gr pkrgm

Bulletproofs

state-of-the-art

oblivious
td

grhm

grhm

Pedersen
commitment

Σ protocol

consistency
proof

Quisquis’s approach [FMMO19]
bring extra bridging cost

Σ-Bullet

integration of Bulletproof
and Sigma protocol

Zether’s approach [BAZB20]
require dissecting Bulletproof, not modular

25 / 43

Encryption Component of ISE

ElGamal

gr pkrgm

Bulletproofs

state-of-the-art

oblivious
td

grhmgrhm

Pedersen
commitment

Σ protocol

consistency
proof

Quisquis’s approach [FMMO19]
bring extra bridging cost

Σ-Bullet

integration of Bulletproof
and Sigma protocol

Zether’s approach [BAZB20]
require dissecting Bulletproof, not modular

25 / 43

Encryption Component of ISE

ElGamal

gr pkrgm

Bulletproofs

state-of-the-art

oblivious
td

grhm

grhm

Pedersen
commitment

Σ protocol

consistency
proof

Quisquis’s approach [FMMO19]
bring extra bridging cost

Σ-Bullet

integration of Bulletproof
and Sigma protocol

Zether’s approach [BAZB20]
require dissecting Bulletproof, not modular

25 / 43

Encryption Component of ISE: Twisted ElGamal
twisted ElGamal

gr pkrgm

pkr grhm

no td

Bulletproofs

state-of-the-art

grhm

encode message over another generator h
switch key encapsulation and session key
advantages

1 as secure and efficient as standard ElGamal;
2 Bulletproofs-friendly: especially in the aggregated mode

26 / 43

Encryption Component of ISE: Twisted ElGamal
twisted ElGamal

gr pkrgm

pkr grhm

no td

Bulletproofs

state-of-the-art

grhm

encode message over another generator h
switch key encapsulation and session key
advantages

1 as secure and efficient as standard ElGamal;
2 Bulletproofs-friendly: especially in the aggregated mode

26 / 43

Encryption Component of ISE: Twisted ElGamal
twisted ElGamal

gr pkrgm

pkr grhm

no td

Bulletproofs

state-of-the-art

grhm

encode message over another generator h
switch key encapsulation and session key
advantages

1 as secure and efficient as standard ElGamal;
2 Bulletproofs-friendly: especially in the aggregated mode

26 / 43

Encryption Component of ISE: Twisted ElGamal
twisted ElGamal

gr pkrgm

pkr grhm

no td

Bulletproofs

state-of-the-art

grhm

encode message over another generator h
switch key encapsulation and session key
advantages

1 as secure and efficient as standard ElGamal;
2 Bulletproofs-friendly: especially in the aggregated mode

26 / 43

Comparison to ElGamal

size efficiency
ElGamal pp pk sk C KeyGen Enc Dec
standard |G| |G| |Zp| |2G| 1Exp 3Exp+2Add 1Exp+1Add+1DLOG
twisted 2|G| |G| |Zp| |2G| 1Exp 3Exp+2Add 1Exp+1Add+1DLOG

Related works [FMMO19, BAZB20] use brute-force algorithm to decrypt, we use
Shanks’s algorithm to speed decryption

admits flexible time/space trade-off and parallelization!

Table: Costs of working with Bulletproofs between standard ElGamal and twisted ElGamal: an
additional Pedersen commitment and a Sigma protocol for consistency.

ElGamal size efficiency
standard 2|G|+ |Zp| 4Exp+1Add
twisted 0 0

27 / 43

Comparison to Paillier

Table: Benchmarks of twisted ElGamal and Paillier PKE (32-bit message space and 128-bit
security)

timing (ms) Setup KeyGen Enc Dec ReRand Add Sub Scalar
Paillier — 1644.53 32.211 31.367 — 0.0128 — —

t-ElGamal 21s+6s 0.0151 0.114 1 0.157 0.0031 0.0042 0.093

size (bytes) public parameters public key secret key ciphertext
Paillier — 384 384 768

t-ElGamal 66 33 32 66

28 / 43

Signature Component of ISE

We choose Schnorr signature as the signature component.

1 Setup and KeyGen of Schnorr signature are identical to those of twisted ElGamal.

2 Sign of Schnorr signature is irrelevant to Decrypt of twisted ElGamal:
Sign(sk,m): pick r

R←− Zp, set A = gr, compute e = H(m,A), z = r + sk · e mod p,
output σ = (A, z).

Thus we are able to safely implement key reuse strategy to build ISE
recall Schnorr signature is provably secure by modeling H as RO: simulating signature
oracle by programing H without using sk ⇒ signatures reveals zero-knowledge of sk

29 / 43

NIZK for Lequal
According to our DCP framework and twisted ElGamal, Lequal can be written as:

{(pk1, X1, Y1, pk2, X2, Y2) | ∃r1, r2, v s.t. Xi = pkrii ∧ Yi = grihv for i = 1, 2}.

On statement (pk1, pk2, X1, X2, Y1, Y2), P and V interact as below:
1 P picks a, b1, b2 R←− Zp, sends A1 = pka1 , A2 = pka2 , B1 = gahb1 , B2 = gahb2 to V .
2 V picks e

R←− Zp and sends it to P as the challenge.
3 P computes zi = a+ eri and ti = bi + ev for i = {1, 2} using w = (r1, r2, v),

then sends (z1, z2, t1, t2) to V . V accepts iff the following four equations hold
simultaneously:

pkz11 = A1X
e
1 (1)

pkz22 = A2X
e
2 (2)

gz1ht1 = B1Y
e (3)

gz2ht2 = B2Y
e (4)

30 / 43

NIZK for Lright

According to our DCP framework and twisted ElGamal, Lright can be written as:

{(pk,X, Y) | ∃r, v s.t. X = pkr ∧ Y = grhv ∧ v ∈ V}.

For ease of analysis, we additionally define Lenc and Lrange as below:

Lenc = {(pk,X, Y) | ∃r, v s.t. X = pkr ∧ Y = grhv}
Lrange = {Y | ∃r, v s.t. Y = grhv ∧ v ∈ V}

It is straightforward to verify that Lright ⊂ Lenc ∧ Lrange.
Σenc: Sigma protocol for Lenc

Λbullet: Bulletproofs for Lrange

DL relation between (g, h) is hard ⇒ Σenc ◦ Λbullet is SHVZK PoK for Lright

31 / 43

NIZK for Lsolvent
According to our DCP framework, Lsolvent can be written as:

{(pk, C̃, C) | ∃sk s.t. (pk, sk) ∈ Rkey ∧ ISE.Dec(sk, C̃ − C) ∈ V}.

C̃ = (X̃ = pkr̃, Ỹ = gr̃hm̃) encrypts m̃ of pk under r̃, C = (X = pkr, Y = grhv)
encrypts v under r. Let C ′ = (X ′ = pkr

′
, Y ′ = gr

′
hm

′
) = C̃ − C, Lsolvent can be

rewritten as:

{(pk, C ′) | ∃r′,m′ s.t. C ′ = ISE.Enc(pk,m′; r′) ∧m′ ∈ V}.

Prove it as Lright? No! r′ is unknown.
Solution: refresh-then-prove

1 refresh C ′ to C∗ under fresh randomness r∗ ⇐ can be done with sk

2 prove (C ′, C∗) ∈ Lequal ⇐ Sigma protocol Σddh (do not need r′)
3 prove C∗ ∈ Lright

32 / 43

Bonus: two useful proof gadgets

twisted ElGamal + Bulletproofs: prove an encrypted message lies in specific range
extremely useful in privacy-preserving applications: confidential transaction and
secure machine learning

prover is the sender of C
knows both r and m

pkr grhm πrange
Bulletproofs

πenc
Sigma protocol

prover is the receiver of C
knows sk and thus m

pk r g r hm

pkr
∗

gr
∗
hm

sk re-rand πddh
Sigma protocol

πrange
Bulletproofs

πenc
Sigma protocol

33 / 43

Bonus: two useful proof gadgets

twisted ElGamal + Bulletproofs: prove an encrypted message lies in specific range
extremely useful in privacy-preserving applications: confidential transaction and
secure machine learning

prover is the sender of C
knows both r and m

pkr grhm

πrange
Bulletproofs

πenc
Sigma protocol

prover is the receiver of C
knows sk and thus m

pk r g r hm

pkr
∗

gr
∗
hm

sk re-rand πddh
Sigma protocol

πrange
Bulletproofs

πenc
Sigma protocol

33 / 43

Bonus: two useful proof gadgets

twisted ElGamal + Bulletproofs: prove an encrypted message lies in specific range
extremely useful in privacy-preserving applications: confidential transaction and
secure machine learning

prover is the sender of C
knows both r and m

pkr grhm πrange
Bulletproofs

πenc
Sigma protocol

prover is the receiver of C
knows sk and thus m

pk r g r hm

pkr
∗

gr
∗
hm

sk re-rand πddh
Sigma protocol

πrange
Bulletproofs

πenc
Sigma protocol

33 / 43

Bonus: two useful proof gadgets

twisted ElGamal + Bulletproofs: prove an encrypted message lies in specific range
extremely useful in privacy-preserving applications: confidential transaction and
secure machine learning

prover is the sender of C
knows both r and m

pkr grhm πrange
Bulletproofs

πenc
Sigma protocol

prover is the receiver of C
knows sk and thus m

pk r g r hm

pkr
∗

gr
∗
hm

sk re-rand πddh
Sigma protocol

πrange
Bulletproofs

πenc
Sigma protocol

33 / 43

Bonus: two useful proof gadgets

twisted ElGamal + Bulletproofs: prove an encrypted message lies in specific range
extremely useful in privacy-preserving applications: confidential transaction and
secure machine learning

prover is the sender of C
knows both r and m

pkr grhm πrange
Bulletproofs

πenc
Sigma protocol

prover is the receiver of C
knows sk and thus m

pk r g r hm

pkr
∗

gr
∗
hm

sk re-rand πddh
Sigma protocol

πrange
Bulletproofs

πenc
Sigma protocol

33 / 43

Bonus: two useful proof gadgets

twisted ElGamal + Bulletproofs: prove an encrypted message lies in specific range
extremely useful in privacy-preserving applications: confidential transaction and
secure machine learning

prover is the sender of C
knows both r and m

pkr grhm πrange
Bulletproofs

πenc
Sigma protocol

prover is the receiver of C
knows sk and thus m

pk r g r hm

pkr
∗

gr
∗
hm

sk re-rand πddh
Sigma protocol

πrange
Bulletproofs

πenc
Sigma protocol

33 / 43

NIZK for Auditing Policies: (1/2)

Llimit = {(pk, {Ci}1≤i≤n, amax) | ∃sk s.t.

(pk, sk) ∈ Rkey ∧ vi = ISE.Dec(sk, Ci) ∧
n∑

i=1

vi ≤ amax}

P computes C =
∑n

i=1Ci, proves (pk, C) ∈ Lsolvent using Gadget-2

Lopen = {(pk, C = (X,Y), v) | ∃sk s.t. X = (Y /hv)sk ∧ pk = gsk}

(pk,X, Y, v) ∈ Lopen is equivalent to (Y /hv, X, g, pk) ∈ Lddh.

34 / 43

NIZK for Auditing Policies: (2/2)

Lrate = {(pk, C1, C2, ρ) | ∃sk s.t.
(pk, sk) ∈ Rkey ∧ vi = ISE.Dec(sk, Ci) ∧ v1/v2 = ρ}

We assume ρ = α/β, where α, β are positive integer much smaller than p.
Let C1 = (pkr1 , gr1hv1), C2 = (pkr2 , gr2hv2). P computes

C ′
1 = β · C1 = (X ′

1 = pkβr1 , Y ′
1 = gβr1hβv1)

C ′
2 = α · C2 = (X ′

2 = pkαr2 , Y ′
2 = gαr2hαv2)

Note v1/v2 = ρ = α/β iff hβv1 = hαv2 . (pk, C1, C2, ρ) ∈ Lrate is equivalent to
(Y ′

1/Y
′
2 , X

′
1/X

′
2, g, pk) ∈ Lddh.

Due to nice algebra structure of twisted ElGamal, PGC supports efficient audit
for any policy that can be expressed as linear constraint over transfer amount and
balance

35 / 43

Optimizations

sn pks, pkr, Cs, Cr

memo

πequal ◦ (π1
enc ◦ π1

bullet) ◦ (C̃s ◦ πddh ◦ π2
enc ◦ π2

bullet) σ

36 / 43

Optimizations

sn pks, pkr, Cs, Cr

memo

πequal ◦ (π1
enc ◦ π1

bullet) ◦ (C̃s ◦ πddh ◦ π2
enc ◦ π2

bullet) σ

randomness reuse

Randomness-Reusing
original construction encrypts the same message v under pk1 and pk2 using
independent random coins: (pks, pk

r1
s , gr1hv, pkr, pk

r2
r , gr2hv)

twisted ElGamal is IND-CPA secure in 1-message/2-recipient setting
safe to reuse randomness ⇒ (pk1, pk

r
1, pk2, pk

r
2, g

rhv)

Benefit: compact ctx size & simpler design of Σenc

36 / 43

Optimizations

sn pks, pkr, Cs, Cr

memo

πequal ◦ (π1
enc ◦ π1

bullet) ◦ (C̃s ◦ πddh ◦ π2
enc ◦ π2

bullet) σ

randomness reuse absorbed

aggregated

More Efficient Assembly of NIZK
πenc can be removed since πequal already proves knowledge of Cs

nice feature of twisted ElGamal ⇒ two Bulletproofs can be generated and verified
in aggregated mode ; reduce the size of range proof part by half

Benefit: further shrink the ctx size

36 / 43

Optimizations

sn pks, pkr, Cs, Cr

memo

πequal ◦ (π1
enc ◦ π1

bullet) ◦ (C̃s ◦ πddh ◦ π2
enc ◦ π2

bullet) σ

randomness reuse absorbed

aggregated

absorbed

Eliminate Explicit Signature
Σddh (3-move public-coin ZKPoK of sk1) is a sub-protocol of NIZK for Lsolvent
apply FS transform by appending the rest part to hash input ; πddh serves as
both a proof of DDH tuple and a sEUF-CMA signature of ctx (jointly secure with
twisted ElGamal)

Benefit: further shrink the ctx size & speed ctx generation/verification

36 / 43

Performance

Table: The computation and communication complexity of PGC.

PGC ctx size transaction cost (ms)
big-O bytes generation verify

transaction (2 log2(ℓ) + 20)|G|+ 10|Zp| 1310 40 14

auditing proof size auditing cost (ms)
big-O bytes generation verify

limit policy (2 log2(ℓ) + 4)|G|+ 5|Zp| 622 21.5 7.5

rate policy 2|G|+ 1|Zp| 98 0.55 0.69

open policy 2|G|+ 1|Zp| 98 0.26 0.42

We set the maximum number of coins as vmax = 2ℓ − 1, where ℓ = 32.
Choose EC curve prime256v1 (128 bit security), |G| = 33 bytes, |Zp| = 32 bytes.

37 / 43

Comparison to Related Works

Table: Comparison to other account-based DCP

Scheme transparent
setup scalability confidentiality anonymity auditability

zkLedger ✓+ DL O(n) ? ✓ O(m, |f |)
Zether ✓+ DL O(1) ✓ ✓ ?

PGC ✓+ DL O(1) ✓ 7 O(|f |)

n is the number of system users, m is the number of all transactions on the ledger
zkLedger [NVV18]: (i) ctx size is linear of n, and n is fixed at the very beginning.
(ii) confidentiality is questionable due to the use of correlated randomness; (iii)
audit efficiency is linear of both m and |f | due to anonymity
Zether [BAZB20]: (i) possibly support audit when sacrificing anonymity; (ii)
security of ZKP is hard to check

38 / 43

Outline

1 Background

2 Framework of Auditable DCP System

3 An Efficient Instantiation: PGC

4 Summary

39 / 43

Summary

We propose a framework of auditable DCP from ISE and NIZK
with formal security model and rigorous proof

We instantiate the auditable DCP by carefully designing and combining cryptographic
primitives ; PGC

transparent setup, security solely based on the DLOG assumption
modular, simple and efficient
efficient and fine-grained audit

Highlights
twisted ElGamal: efficient, homomorphic and zero-knowledge proof friendly ; a
good alternative to ISO standard HE schemes: ElGamal and Paillier
two proof gadgets: widely applicable in privacy-preserving scenarios, e.g. secure
machine learning

40 / 43

Ongoing work: Supervisiable DCP

tx

tx

validity check

supervision
sender=Alice
v = 1024

receiver=Bob

41 / 43

Thanks for Your Attention!
Any Questions?

42 / 43

Reference I

[BAZB20] Benedikt Bünz, Shashank Agrawal, Mahdi Zamani, and Dan Boneh. Zether: Towards privacy in a
smart contract world. In Financial Cryptography and Data Security - FC 2020, 2020.

[FMMO19] Prastudy Fauzi, Sarah Meiklejohn, Rebekah Mercer, and Claudio Orlandi. Quisquis: A new design
for anonymous cryptocurrencies. In Advances in Cryptology - ASIACRYPT 2019, volume 11921 of
Lecture Notes in Computer Science, pages 649–678. Springer, 2019.

[NVV18] Neha Narula, Willy Vasquez, and Madars Virza. zkledger: Privacy-preserving auditing for
distributed ledgers. In 15th USENIX Symposium on Networked Systems Design and
Implementation, NSDI 2018, pages 65–80, 2018.

43 / 43

	Background
	Framework of Auditable DCP System
	An Efficient Instantiation: PGC
	Summary
	Conclusion
	References

