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Privacy in Payment System

no one can figure out the transfer amount
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no one can identify the “true” sender and recipient
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Auditablity in Payment System

(] tx (]

- | 4h
' validity check
I audit -y
SaE | 5 i,
f({xip) =1 AUDIT

e f denotes the audit predicate that checks if {tx;} satisfy some specified policy
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Centralized Payment System

N ()

@ txs are kept on a private ledger only known to the center

@ the center is in charge of validity check as well as protecting privacy and
conducting audit

6/43



Decentralized Payment System (Blockchain-based Cryptocurrencies)

@ txs are kept on a global distributed public ledger — the blockchain

@ to ensure public verifiability, Bitcoin and Ethereum simply expose all tx
information in public ~ no privacy
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Motivation

Privacy and Auditability are crucial in any financial system, we want to know:

In the decentralized setting, can we have the good of both?

. - | double-edged sword ( .
‘ Confidentiality | L Anonymity
co-exist plausiable deniability

\»‘ Auditability -

In this work, we trade anonymity for auditablity, propose the first

auditable decentralized payment (DCP) system
in the account-based model
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Outline

© Framework of Auditable DCP System
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Algorithms of Auditable DCP (Account-based Model)
Setup(1*) — (pp)

"N

CreateCTx(sky, pk1, pka,v) — ctx

"N

CreateAccount(dy,sn;)

|

[pk1, sk, C1,snq]
update él

)
VerifyCTx(ctx) = 1

B

4“b»

CreateAccount(v, sn2)

J

[pka, ska, Ca, s

|

— update C’Q

increase snj

ct

AuditCTx(f, ctx,m) = 0/1 &2

sn, memo = (pki, pka, C'), aux

AUDIT
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Desired Functionality and Security

Verifiability ® validity of txs are publicly verifiable

only the sender can generate txs,

Authentici
uthenticity nobody else can forge

Confidentialit \—f,m except the sender and receiver,
CONFE!
y = nobody learns the transfer amount

even the sender cannot generate an

Soundness “ . ' illegal tx that passes validity check

o 4 articpants cannot cheat and
Auditability S0 particpants .
BUDIT audit is privacy-preserving
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Formal Security Model (Oracles)

/ OextH

OfegH *Otrans
register honest accounts Oreveal
register corrupted accounts

\regCg’Oinject

corrupt honest accounts

direct honest accounts to conduct ctx

ask honest accounts to reveal ctx

inject ctx from corrupted accounts
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Formal Security Model: Authenticity

VerifyCTx(ctx*) =1 A ~ pp < Setup(\);

AdVA()\) =Pr pk: S Thonest A ctx* §é Tctx(pk;k) oot ‘Ao(pp);
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Formal Security Model: Confidentiality

pp + Setup(N);
(state, pk?, pk},vo,v1) < A (pp);
Adva(\) =Pr |B=08": g&{0,1} -
ctx* < CreateCTx(sk}, pky, pk;, vg);
B« A9 (state,ctx*);
To prevent trivial attacks, A is subject to the following restrictions:
Q pkl,pk) chosen by A are required to be honest accounts, and A is not allowed to
make corrupt queries to either pk} or pky;
@ A is not allowed to make reveal query to ctx®.

@ let vgym (with initial value 0) be the dynamic sum of the transfer amounts in

Otrans queries related to pk? after ctx*, both U5 — vg — vsym and U5 — V1 — Vsum
must lie in V.

Restrictions 1 and 2 prevents trivial attack by decryption, restrictions 3 prevent
inferring B by testing whether overdraft happens.
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Formal Security Model: Soundness

VerifyCTx(ctx*) =1  pp < Setup(\);

Adv4(A) = Pr A memo* ¢ Lyaiq ~ ctx* « A%(pp); |-

Here, ctx* = (sn*, memo*, aux®).
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Choice of Building Blocks

Verifiability Q eliminate out-of-band transfer

additively HE

Authenticity

Confidentiality \;.../M/““ Signature
Soundness n
NIZK

Auditability 28O
AUDIT
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A Subtle Point: Key reuse vs. Key Separation

We employ PKE and SIG simutaneously to secure auditable DCP.

key separation key reuse
(pk1, sky), (pka, sks) (pk, sk)
Pros Pros
o off-the-shelf & easy to analyze @ greatly simplify DCP system
Cons @ more efficient
@ double key size Cons
@ tricky address derivation @ case-tailored design

We choose Integrated Signature and Encryption (ISE): one keypair for both encryption
and sign, while IND-CPA and EUF-CMA hold in the joint sense

17/43



Generic Construction of Auditable DCP: Building blocks

ISE = (Setup, KeyGen, Sign, Verify, Enc, Dec)
e PKE component is additively homomorphic over Z,

e Fix pp, KeyGen naturally induces an AP relation:

Rkey = {(pk, sk) : Ir s.t. (pk, sk) = KeyGen(pp; 7,)}

NIZK = (Setup, CRSGen, Prove, Verify)

@ adaptive soundness
o adaptive ZK
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Algorithms of Auditable DCP: 1/4

Setup(1*): generate pp for the auditable DCP system
® ppise < ISE.Setup(1?), ppnizk + NIZK.Setup(1?), crs + NIZK.CRSGen (ppnizk)

@ output pp = (PPise; PPnizk, €'S), set V = [0, Umax]

CreateAcct(0,sn): create an account
o (pk,sk) < ISE.KeyGen(ppise), pk serves as account address
o C « ISE.Enc(pk, ¥;7)

RevealBalance(sk, C): reveal the balance of an account
e 1 + ISE.Dec(sk, C)
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Algorithms of Auditable DCP: 2/4

CreateCTx(sks, pks, v, pky): transfer v coins from account pks to account pk;.
e (s « ISE.Enc(pks,v;r1), Cy < ISE.Enc(pk,,v;rs), memo = (pks, pky, Cs, Cy).

e run NIZK.Prove with witness (sks,r1,72,v) to generate a proof mTeorrect for
memo = (Pk?s,pk?r, Cs, Cr) € Lyalig — Lequal A Lright A Lsolvent

Lequal = {(pks, pky, Cs,Cy) | Fri,ra, v s.t.
Cs = ISE.Enc(pks,v;71) A C, = ISE.Enc(pk,,v;r2)}
Lyight = {(pks, Cs) | 3r1,v s.t. Cs = ISE.Enc(pks,v;r1) Av € V}
Leolvent = {(pks, Cs, Cs) | Isky s.t. (pks, sks) € Ruey A ISE.Dec(sks, Cs — Cs) € V}

e o < ISE.Sign(sks, (sn, memo, myalid))

@ output ctx = (sn, memo, Tyalid, 7).
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Algorithms of Auditable DCP: 3/4

signed message

N
Ve memo Tvalid N\
sn pks,pkr,C%,Cl~ Tequal Tright Tlsolvent | O
v
aux

Figure: Data structure of confidential transaction.

VerifyCTx(ctx): check if ctx is valid.
@ parse ctx = (sn, memo, Tyalid, @), memo = (pks, pk,, Cs, Cy):
@ check if sn is a fresh serial number of pk, (inspect the blockchain);
@ check if ISE.Verify(pks, (sn, memo, myaiid), o) = 1;
© check if NIZK . Verify(crs, memo, myaiq) = 1.
@ ctx is recorded on the ledger if validity test passes or discarded otherwise.

Update(ctx): sender gpdatgs his balance C’s = C’s — (s and increments sn, receiver
updates his balance C,. = C, + C...
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Algorithms of Auditable DCP: 4/4

JustifyCTx(pk, sk, {ctx;}[-1, f): user pk runs NIZK.Prove with witness sk to generate
a zero-knowledge proof 7y for f({ctx;}i-;) = 1.

flimit : Z?:]_ v; < E frate : ’U]_/’UQ =p fopen U= U*
anti-money laundering tax payment selective disclosure
ctxy ~
ab
™ Ccix ™ Ctx; @ ctxy ™ cix ™
- }:;I - ab OFFICE - ab
ctx,, ™

@

AuditCTx(pk, {ctx; }7;, f,7f): auditor runs NIZK.Verify to check if 7 is valid.
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Outline

e An Efficient Instantiation: PGC
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Disciplines in Mind

While the auditbale DCP framework is intuitive, secure and efficient instantiation
requires clever choice and design of building blocks.

efficient ctx generation /verification

efficient .
compact ctx size

system does not require a trusted setup

transparent setu
P P design case-tailored NIZK

build the system from reusable gadgets

simple & modular .
can be reused in other places

& @ (B
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Encryption Component of ISE

ElGamal

g pk"g™
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oblivious
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Encryption Component of ISE

state-of-the-art

ElGamal Bulletproofs
oblivious

td .
consistency Pedersen

proof commitment
g phg"———[Spretegell—— g"h" ————g'h"

Quisquis’s approach [FMMO19]
bring extra bridging cost
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Encryption Component of ISE

state-of-the-art

ElGamal Bulletproofs
oblivious

o integration of Bulletproof

and Sigma protocol

g pk'g" S-Bullet. g™

Zether's approach [BAZB20]
require dissecting Bulletproof, not modular
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Encryption Component of ISE: Twisted EIGamal
twisted ElGamal

- N
s N
s
-

g" p\kﬁrgm

26 /43



Encryption Component of ISE: Twisted EIGamal
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Encryption Component of ISE: Twisted EIGamal
twisted ElGamal

TN state-of-the-art
gr'/ p\kjrgm Bulletproofs
pk” gr R grhm
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Encryption Component of ISE: Twisted EIGamal
twisted ElGamal

’ N
s N

J. Pk g™
pk” grh?n

state-of-the-art

Bulletproofs

@ encode message over another generator h

@ switch key encapsulation and session key
@ advantages

@ as secure and efficient as standard ElGamal;
@ Bulletproofs-friendly: especially in the aggregated mode

g’l" hm
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Comparison to ElIGamal

size efficiency
ElGamal | pp | pk | sk C | KeyGen Enc Dec
standard | |G| | |G| | |Zy| | |2G| | 1Exp | 3Exp+2Add | 1Exp+1Add+1DLOG
twisted | 2|G| | |G| | |Z,| | |2G] 1Exp | 3Exp+2Add | 1Exp+1Add+1DLOG

Related works [FMMO19, BAZB20] use brute-force algorithm to decrypt, we use

Shanks's algorithm to speed decryption

admits flexible time/space trade-off and parallelization!

Table: Costs of working with Bulletproofs between standard ElGamal and twisted ElGamal: an
additional Pedersen commitment and a Sigma protocol for consistency.

ElGamal size efficiency
standard | 2|G| + |Z,| | 4Exp+1Add
twisted 0 0
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Comparison to Paillier

Table: Benchmarks of twisted ElGamal and Paillier PKE (32-bit message space and 128-bit

security)
timing (ms) | Setup | KeyGen | Enc Dec | ReRand | Add Sub | Scalar
Paillier — 1644.53 | 32.211 | 31.367 — 0.0128 — —
t-ElGamal | 21s+6s | 0.0151 | 0.114 1 0.157 | 0.0031 | 0.0042 | 0.093
size (bytes) | public parameters | public key | secret key | ciphertext
Paillier — 384 384 768
t-ElGamal 66 33 32 66
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Signature Component of ISE

We choose Schnorr signature as the signature component.

@ Setup and KeyGen of Schnorr signature are identical to those of twisted EIGamal.

@ Sign of Schnorr signature is irrelevant to Decrypt of twisted EIGamal:
o Sign(sk,m): pick r & Z,, set A= g", compute e = H(m, A), z =r + sk - e mod p,
output o = (4, 2).
Thus we are able to safely implement key reuse strategy to build ISE

o recall Schnorr signature is provably secure by modeling H as RO: simulating signature
oracle by programing H without using sk = signatures reveals zero-knowledge of sk
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NIZK for Lequal
According to our DCP framework and twisted ElGamal, Lequal can be written as:

{(pkl,Xl,}/i,pkz,XQ,Yg) | dry,7r9,v s.t. X; :pk‘:i ANY; = gmhv for i = 1,2}.

On statement (pk1, pka, X1, X2,Y1,Y2), P and V interact as below:
Q@ P picks a, by, by & Ly, sends Ay = pk{, Ay = pk§, By = g*hbr, By = g®h%? to V.
@ V picks e & Z,, and sends it to P as the challenge.
© P computes z; = a + er; and t; = b; + ev for i = {1,2} using w = (r1,72,v),
then sends (21, 22,t1,t2) to V. V accepts iff the following four equations hold
simultaneously:

pkit = AlXT (1)
Pk = AoX§ (2)
gt = BY* (3)
g2h? = ByY* (4)
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NIZK for Lyight
According to our DCP framework and twisted EIGamal, Lyght can be written as:
{(pk, X,Y) | Ir,vst. X =pk" ANY =g"h" ANv e V}.
For ease of analysis, we additionally define Lenc and Lyange as below:

Lenc = {(pk, X,Y) | Ir,v st. X =pk" ANY = g"h"}
Lrange = {Y ’ 37", vstY = g”h” ANV € V}

It is straightforward to verify that Lyight C Lenc A Lrange-
@ Yenc: Sigma protocol for Lenc

® Apyiiet: Bulletproofs for Lyange

DL relation between (g, h) is hard = Yenc 0 Apyiier is SHVZK PoK for Lyight
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NIZK for Lgoent
According to our DCP framework, Lgoent Can be written as:

{(pk,C,C) | Isk s.t. (pk, sk) € Ryey A ISE.Dec(sk,C — C) € V}.

C = (X =pk™,Y = g"h™) encrypts 1 of pk under 7, C = (X =pk",Y = g"h")
encrypts v under r. Let C' = (X' = pk™,Y' = g" k™) = C — C, Lgojvent can be
rewritten as:

{(pk,C") | Ir',m’ s.t. C" = ISE.Enc(pk,m’;r") Am’ € V}.

Prove it as Lyight? No! 7 is unknown.

Solution: refresh-then-prove
Q refresh C’ to C* under fresh randomness r* < can be done with sk
@ prove (C',C*) € Lequal < Sigma protocol Xqqn (do not need 7”)
© prove C* € Lyight
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Bonus: two useful proof gadgets

twisted EIGamal + Bulletproofs: prove an encrypted message lies in specific range

@ extremely useful in privacy-preserving applications: confidential transaction and
secure machine learning
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prover is the sender of C
knows both r and m

Bulletproofs
pk" g h™m T'range

—_—

‘ Sigma protocol

Tenc

prover is the receiver of C'
knows sk and thus m

pk ghm

Sigma protocol
sk l re-rand —————Tddh
. . Bulletproofs
pk” qg" T'range
-
’ Sigma protocol
Tenc
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NIZK for Auditing Policies: (1/2)

Liimit = {(pk, {Ci}1<i<n, Gmax) | Isk s.t.

(pk, sk) € Riey A v = ISE.Dec(sk, Ci) A > v; < amax}

i=1

P computes C' = """ | C;, proves (pk,C) € Leojyent using Gadget-2

Lopen = {(pk,c = (X,Y),’U) ‘ ElSk‘ st. X = (Y/hU)Sk /\pk; = gSk}
(pk, X,Y,v) € Lopen is equivalent to (Y /h", X, g, pk) € Lqdn.
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NIZK for Auditing Policies: (2/2)

Lrate = {(pka 017 CQ,ﬂ) | dsk s.t.
(pk, sk) € Rykey A v; = ISE.Dec(sk, C;) Avi/va = p}

We assume p = a/3, where a, 3 are positive integer much smaller than p.
Let C1 = (pk™, g h""), Cy = (pk™, g"2h"2). P computes
Cl=B-Cy = (X] =pk",Y] = g hP")
Cy=a-Cy= (X5 =pk®? Y, = g*"h*"?)

Note vy /ve = p = a/f3 iff WPV = h*2. (pk, Oy, Ca, p) € Lyate is equivalent to
(Y{/YQIaXi/Xé’gapk) € deh-

Due to nice algebra structure of twisted ElGamal, PGC supports efficient audit

for any policy that can be expressed as linear constraint over transfer amount and
balance

35/43



Optimizations

sn

pk‘s,Pkm Cs, C;

1
Tequal © <7T

1
enc © Thullet

) 0 (Cs © Tddh © T2ne © Thullet)

~
memo
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Optimizations

randomness reuse

sn

pks, pky, Cs, C;

1 1 ~ 2 2
Tequal © (ﬂ-enc © 7Tbu||et) o (CS O Tddh © Tenc © 7Tbullet)

~
memo

Randomness-Reusing

@ original construction encrypts the same message v under pk; and pko using

independent random coins: (pks, pkl', g" h", pky, pk2, g">h")

o twisted ElGamal is IND-CPA secure in 1-message/2-recipient setting

safe to reuse randomness = (pki, pki, pka, pkh, g"h")

Benefit: compact ctx size & simpler design of Yenc
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Optimizations

randomness reuse

absorbed

N
- N

sn

pks, pk,, Cs, Cy

~ \

1 1 A 2 2
Tequal © (ﬂ-enc © Trbul/let) © (CS O Tddh © Tepc © Trl;ullet)

i

memo

aggregated

More Efficient Assembly of NIZK

@ Tenc Can be removed since meqyal already proves knowledge of Cy

@ nice feature of twisted ElIGamal = two Bulletproofs can be generated and verified

in aggregated mode ~» reduce the size of range proof part by half

Benefit: further shrink the ctx size
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Optimizations

absorbed

randomness reuse absorbed T RN
\\ \

-

|

v 1 1 A v 2 2
sn pks’ka7 CS’ C” Tequal © (ﬂ-enc © 7Tbullet) o (CS O Tddh © Tenc © 7Tbullet) g
A S

_

~

memo aggregated

Eliminate Explicit Signature
@ Y4dh (3-move public-coin ZKPoK of ski) is a sub-protocol of NIZK for Leopent

@ apply FS transform by appending the rest part to hash input ~» myqp, serves as
both a proof of DDH tuple and a sEUF-CMA signature of ctx (jointly secure with
twisted ElGamal)

Benefit: further shrink the ctx size & speed ctx generation /verification
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Performance

Table: The computation and communication complexity of PGC.

ctx size transaction cost (ms)

PGC . . :
big-O bytes generation verify

transaction (21ogy(£) + 20)|G| + 10|Zy| 1310 40 14

" proof size auditing cost (ms)

auditing big-O bytes generation verify

limit policy (2logy(£) +4)|G| + 5|Z,| 622 21.5 7.5

rate policy 2|G| + 1|Z,| 98 0.55 0.69

open policy 2|G| + 1|Zy| 98 0.26 0.42

@ We set the maximum number of coins as vmax = 2¢ — 1, where ¢ = 32.

@ Choose EC curve prime256v1 (128 bit security), |G| = 33 bytes, |Z,| = 32 bytes.
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Comparison to Related Works

Table: Comparison to other account-based DCP

Scheme trazzsj;ent scalability confidentiality anonymity auditability

zkLedger v+ DL O(n) ? v O(m,|f])
Zether v+ DL o(1) v v ?
PGC v+ DL 0(1) v X o(lf

@ n is the number of system users, m is the number of all transactions on the ledger

o zklLedger [NVV18]: (i) ctx size is linear of n, and n is fixed at the very beginning.
(i) confidentiality is questionable due to the use of correlated randomness; (iii)
audit efficiency is linear of both m and |f| due to anonymity

@ Zether [BAZB20]: (i) possibly support audit when sacrificing anonymity; (ii)
security of ZKP is hard to check
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Outline

@ Summary
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Summary

We propose a framework of auditable DCP from ISE and NIZK

@ with formal security model and rigorous proof

We instantiate the auditable DCP by carefully designing and combining cryptographic
primitives ~ PGC

@ transparent setup, security solely based on the DLOG assumption
@ modular, simple and efficient
o efficient and fine-grained audit
Highlights
o twisted ElGamal: efficient, homomorphic and zero-knowledge proof friendly ~ a
good alternative to ISO standard HE schemes: ElGamal and Paillier

@ two proof gadgets: widely applicable in privacy-preserving scenarios, e.g. secure
machine learning
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Ongoing work: Supervisiable DCP

(] tx ()
4ab

validity check

R N—
tlxo R supervision j@
\ ' : sender=Alice

] v = 1024 ssssssssssssssss
receiver=Bob
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Thanks for Your Attention!

Any Questions?
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