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Privacy Preserving Computation

国务院《关于构建要素市场化的意见》

《十四五规划和 2035 年远景目标纲要》

数据是新型生产要素 ; 激活数据要素潜能

国家重大战略

数据泄露事件频发, 损失难以估量
三法五典出台

严格保护数据安全 ; 数据流动性降低

数据保护需求

Gartner 2021: 变革型前沿技术 ⇒ 破局的关键、数字经济的安全底座

高级密码方案

零知识证明

安全多方计算

打破数据孤岛

释放数据价值
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Private Set Operations (high frequency and high value)

sender receiver
X = {x1, . . . , xn2}
V = {v1, . . . , vn2}

Y = {y1, . . . , yn1}

X Y PSI = X ∩ Y

X Yf PCSI =


|X ∩ Y | cardinality

|X ∩ Y |,
∑

xi∈X∩Y vi cardinality-sum
f(X ∩ Y ) general computation

X Y PSU = X ∪ Y
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Wide Applications of PSO

PSI
privacy-preserving location sharing
private contact discovery
DNA testing and pattern matching

PCSI
measuring the effectiveness of online advertising

PSU
IP blacklist and vulnerability data aggregation
private DB supporting full join
private-ID
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SOTA of PSO
PSI has been extensively studied in the last two decades

balanced setting: [KKRT16, CM20, RR22] achieves linear complexity, and almost
as efficient as insecure hash protocol
unbalanced setting: [CLR17, CHLR18, CMdG+21] achieves sub-linear complexity
of large set

In sharp contrast, the study of PCSI and PSU are not satisfying.

PCSI
[HFH99, IKN+20, PSTY19] achieve linear complexity

concretely 20× slower in timing and 30× more communication than PSI
PSU

[KS05, Fri07, HN10, KRTW19, JSZ+22] have superlinear complexity
[DC17, ZCL+23] achieve linear complexity, but not strict (communication or
computation complexity additionally depends on statistical parameter λ ≈ 40)

concretely 20× slower in timing and 25× more communication than PSI

7 / 56



SOTA of PSO
PSI has been extensively studied in the last two decades

balanced setting: [KKRT16, CM20, RR22] achieves linear complexity, and almost
as efficient as insecure hash protocol
unbalanced setting: [CLR17, CHLR18, CMdG+21] achieves sub-linear complexity
of large set

In sharp contrast, the study of PCSI and PSU are not satisfying.

PCSI
[HFH99, IKN+20, PSTY19] achieve linear complexity

concretely 20× slower in timing and 30× more communication than PSI

PSU
[KS05, Fri07, HN10, KRTW19, JSZ+22] have superlinear complexity
[DC17, ZCL+23] achieve linear complexity, but not strict (communication or
computation complexity additionally depends on statistical parameter λ ≈ 40)

concretely 20× slower in timing and 25× more communication than PSI

7 / 56



SOTA of PSO
PSI has been extensively studied in the last two decades

balanced setting: [KKRT16, CM20, RR22] achieves linear complexity, and almost
as efficient as insecure hash protocol
unbalanced setting: [CLR17, CHLR18, CMdG+21] achieves sub-linear complexity
of large set

In sharp contrast, the study of PCSI and PSU are not satisfying.

PCSI
[HFH99, IKN+20, PSTY19] achieve linear complexity

concretely 20× slower in timing and 30× more communication than PSI
PSU

[KS05, Fri07, HN10, KRTW19, JSZ+22] have superlinear complexity
[DC17, ZCL+23] achieve linear complexity, but not strict (communication or
computation complexity additionally depends on statistical parameter λ ≈ 40)

concretely 20× slower in timing and 25× more communication than PSI
7 / 56



Motivation

Different approaches are used for different private set operations ; require much more
engineering effort and maintaining cost

Goal: a unified framework of PSO

There exists huge efficiency gap between PSI and other PSO protocols
Goal: efficient instantiations to close the gap1

After ≈ 40 years, DH-PSI [Mea86] is still the most easily understood and implemented
one among numerous PSI protocols. Surprisingly, no counterpart is known in the PSU
setting yet. Existing protocols are very complicated.

Goal: build DDH-based PSU protocol as simple as DH-PSI

Is there a central building block that enables a unified framework for PSO?
How to give instantiations with optimal asymptotic complexity and good concrete efficiency?

Can the DDH assumption strike back with efficient PSU protocol?

1[GMR+21] presented a PSO framework from permuted characteristic. However, its oblivious shuffle
functionality is not necessary for PSO, and incurs superlinear complexity.
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Start Point: multi-query Private Membership Test (mqPMT) underlying PSI

mqPMTserver clientY X = {x1, . . . , xn}

e⃗ ∈ {0, 1}n =

{
ei = 1 xi ∈ Y
ei = 0 xi /∈ Y

sender receiver

Problem: the client learns both xi and ei, a.k.a. the intersection ; not suitable
for protocols that should hide intersection, such as PCSI and PSU.
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The core protocol: multi-query Reverse Private Membership Test (mqRPMT)

mqRPMTserver clientY X = {x1, . . . , xn}

e⃗ ∈ {0, 1}n =

{
ei = 1 xi ∈ Y
ei = 0 xi /∈ Y

The server learns ei, while the client learns xi, a.k.a. the information of
intersection is shared between the two parties ; suitable for all PSO protocols
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PSO from mqRPMT

mqRPMTserver client
Y

X = {x1, . . . , xn}
e⃗ = (e1, . . . , en)

receiver sender

directly yields PSI-card: |X ∩ Y | is the Hamming weight of e⃗yields PSI coupled with OT: receiver obtains X ∩ Y

OT

ei
(⊥, xi)

zi
zi =

{
⊥ ei = 0
xi ei = 1

yields PSU coupled with OT (flipping e⃗): receiver obtains X − Y

OT

1− ei
(⊥, xi)

zi
zi =

{
xi ei = 0
⊥ ei = 1

yields PSI-card-sum coupled with OT and masking trick

OT

ei
(ri, vi + ri)

zi
V = {v1, . . . , vn}

ri
R←− Zqzi =

{
ri ei = 0

vi + ri ei = 1 ∑n
i=1 zi

receiver obtains |X ∩ Y | sender obtains
∑

xi∈Y vi =
∑n

i=1 zi −
∑n

i=1 ri

yields PSI-card-secret-share coupled with OT and masking trick

OT

ei
(ri, xi ⊕ ri)

zi ri
R←− {0, 1}ℓ

zi =

{
ri ei = 0

xi ⊕ ri ei = 1

receiver obtains |X ∩ Y | and zi sender has xi ⊕ ri
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Private-ID

receiver sender

Private-ID

(y1, . . . , yn)

(id(y1), . . . , id(yn))

(x1, . . . , xn)

(id(x1), . . . , id(xn))

id(X ∪ Y )

Buddhavarapu et al. [BKM+20] proposed private-ID:
assigns two parties a random identifier per item
each party obtains identifiers to his own set, as well as identifiers of the union

With private-ID, two parties can sort their private set w.r.t. a global set of identifiers,
and then can proceed any desired private computation item by item, being assured
that identical items are aligned.
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Prior Construction of Private-ID

[BKM+20] gave a concrete DDH-based protocol. [GMR+21] showed how to build
private-ID from OPRF and PSU.

receiver sender

Y = (y1, . . . , yn) X = (x1, . . . , xn)
F : K ×D → R

where R is an abelian group

OPRFk1
xi

Fk1(xi)

OPRF k2
yi

Fk2(yi)

run OPRF twice in reverse order: id(z) := Fk1(z)⊕ Fk2(z)

PSU
id(Y )

id(X)
id(X ∪ Y )

14 / 56



Our Construction of Private-ID
receiver sender

Y = (y1, . . . , yn) X = (x1, . . . , xn)

G : K ×D → R where K = K1 ×K2

distributed
OPRF

{yi}ni=1

k1, {Gk1,k2(yi)}ni=1

{xi}ni=1

k2, {Gk1,k2(xi)}ni=1

set id(z) = Gk1,k2(z)

standard notion are defined w.r.t. any private inputs ; arbitrary protocol composition
relaxed notion w.r.t. distribution of private inputs ; efficiency improvement

distributional
PSU

id(Y )
id(X)

id(X ∪ Y )
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Starting Point: PEQT

PEQT

Private Equality Test

server client
y x

e := x
?
= y

Observation: PEQT is not only an extreme case of mqPMT, but also an extreme case
of mqRPMT
Goal: build PEQT amenable to extension:

y ; Y = {y1, . . . , ym}, x ; X = {x1, . . . , xn}, e ; e⃗ = (e1, . . . , en)
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High-level Idea

oblivious joint encoding (element)

encoding must be done by two
parties sequentially, while the
codeword is order-irrelevant

the encoding process reveals
no additional information

pseudorandom “commutative” keyed function

19 / 56



Commutative Weak PRF
We first formally define two standard properties for keyed functions.
Composable. For a family of keyed functions F : K ×D → R, F is 2-composable if
R ⊆ D (special case R = D) ; Fk1(Fk2(·)) is well-defined.
Commutative. A family of composable keyed functions is commutative if:

∀k1, k2 ∈ K, ∀x ∈ D : Fk1(Fk2(x)) = Fk2(Fk1(x))

Definition 1 (Commutative Weak PRF)
F : K ×D → D is cwPRF if it satisfies weak pseudorandomness (k R←− K, x R←− X) and
commutative property simultaneously. When F is a permutation, we say F is cwPRP.

Why merely weak pseudorandomness?
Commutativity denies standard pseudorandomness. Consider the following attack:

A picks k′
R←− K, x R←− D, queries the real-or-random oracle at point Fk′(x) and x,

receiving y′ and y. A then outputs ‘1’ iff Fk′(y) = y′

Fk′(y = Fk(x)) = Fk(Fk′(x)) = y′

20 / 56
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Construction of cwPRF

Construction (DDH-based cwPRF)
Setup(1κ): runs GroupGen(1κ)→ (G, g, p), output pp = (G, g, p) which defines

F : Zp ×G→ G as Fk(x) := xk

KeyGen(pp): outputs k
R←− Zp.

Eval(k, x): on input k ∈ Zp and x ∈ G, outputs xk.

DDH assumption ⇒ weak pseudorandomness
Commutativity: ∀k1, k2 ∈ K and ∀x ∈ D: Fk1(Fk2(x)) = xk1k2 = Fk2(Fk1(x))

cwPRF is the “right” cryptographic abstraction of the classic DH function

21 / 56



Post-quantum Secure cwPRF
cwPRF can be analogously built from weak pseudorandom efficient group action,
which is in turn based on supersingular isogeny assumption.

Supersingular isogeny is still believed to be post-quantum secure so far, but its
presumed post-quantum security is shaky.

Can we build cwPRF from lattice-based assumption?

Note that cwPRF ⇒ NIKE.

(a, Fa(x)) (b, Fb(x))

Fa(Fb(x)) = k = Fb(Fa(x))

non-interactive key-exchange

A recent result of Guo et al. [GKRS22] indicated that it would be difficult to construct
NIKE from lattice-based assumptions.

giving lattice-based cwPRF or proving impossibility will lead to progress on some other
well-studied questions in cryptography
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Randomness Enhancement

But what we need for mqRPMT is standard pseudorandomness.
Solution: hash-then-evaluate

Domain extension: handle arbitrary domain X = {0, 1}∗

Randomness amplification: weak ; standard

D R
weak PRF Fk(·)

X
random oracle H

randomness amplification

standard PRF Fk(H(·)) : K ×X → R

Commutativity still holds w.r.t. H (suffice for mqRPMT)

Fk1(Fk2(H(x))) = Fk2(Fk1(H(x)))
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mqRPMT from cwPRF

PEQTP1 (server)
y

k1
R←− K

P2 (client)
x

k2
R←− K

Fk1(H(y))

Fk2(H(x))

Fk2(Fk1(H(y)))

partial encoding

set e = 1 iff
Fk1(Fk2(H(x)))

?
= Fk2(Fk1(H(y)))

mqRPMTP1 (server)
Y = {y1, . . . , yn1}

k1
R←− K

P2 (client)
X = {x1, . . . , xn2}

k2
R←− K

{Fk1(H(yi))}i∈[n1]

{Fk2(H(xi))}i∈[n2]

set ei = 1 iff
Fk1(Fk2(H(xi))) ∈ Ω Ω← {Fk2(Fk1(H(yi)))}i∈[n1]

send encoding in order reveals intersection!

Ω← {Fk2(Fk1(H(yπ(i)))}i∈[n1] π
R←− Perm[n1]

send encoding in permuted order

Ω← BloomFilter({Fk2(Fk1(H(yi))}i∈[n1])

more space efficient: admit small false positive probability
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Complexity Analysis

Consider the balanced setting: n1 = n2 = n

Table: Complexity of cwPRF-based mqRPMT.

Computation 4n× Fk(·) + 2n× H(·) hash-to-domain
Communication 3n× |D| or 2n× |D|+ n · 1.44λ (≪ |D|)

cwPRF-based mqRPMT is optimal in the sense that both computation and
communication complexities are strictly linear in n

Instantiating the PSO framework with cwPRF-based mqRPMT, DDH assumption
strikes back with the first strictly linear PSU protocol

incredibly simple and efficient
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Starting Point: mqPMT/PSI from OPRF

OPRF

Oblivious PRF

P1 (server) P2 (client)
(x1, . . . , xn)

k
R←− K

x1, . . . , xn

Fk(x1), . . . , Fk(xn)

mqPMT/PSI
P1 (server/sender)

(y1, . . . , yn1)
P2 (client/receiver)

(x1, . . . , xn2)OPRFk
R←− K

x1, . . . , xn2

Fk(x1), . . . , Fk(xn2)

Fk(y1), . . . , Fk(yn1) check if
Fk(xi) ∈ {Fk(yj)}j∈[n2]

play the role of oblivious encoding
order preserving ; reveal intersection

to enable mqRPMT
we need permuted oblivious encoding
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mqRPMT from Permuted OPRF

permuted
OPRF

a generalization of OPRF

P1 (server) P2 (client)
(x1, . . . , xn)

k
R←− K

π
R←− Perm[n]

x1, . . . , xn

Fk(xπ(1)), . . . , Fk(xπ(n))

mqRPMT

permuted
OPRF

client
(x1, . . . , xn2)

server
(y1, . . . , yn1)

k
R←− K

π
R←− Perm[n1]

y1, . . . , yn1

Fk(yπ(1)), . . . , Fk(yπ(n1))

= Ω

Fk(x1), . . . , Fk(xn2) set ei = 1 iff
Fk(xi) ∈ Ω
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Build Permuted OPRF from cwPRP

A common approach to build OPRF is “mask-then-unmask” via homomorphism

OPRF for G : K ×X → Z

server
k

client
(x1, . . . , xn)x̂1, . . . , x̂n mask input

ẑ1 = G′
k(x̂1), . . . , ẑn = G′

k(x̂n)evaluate unmask output: ẑi → zi

if unmask ops are unified:
independent of input

shuffle ; permuted OPRF

cwPRP enables simplest unified mask-then-unmask
mask: x̂← Fs(H(x))
evaluate: ẑ ← Fk(x̂)

unmask: z ← F−1
s (Fk(x̂)) = Fk(F

−1
s (x̂)) = Fk(H(x))
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Permuted OPRF from DDH-based cwPRP

Observe that the DDH-based cwPRF is acturally a cwPRP F : Zp ×G→ G.
combine H : {0, 1}∗ → G ⇒ permuted OPRF protocol for G : Zp × {0, 1}∗ → G
defined as Gk(x) = Fk(H(x)).

pOPRF for Gk(x) = Fk(H(x))

server client
(x1, . . . , xn)x̂1 = H(x1)

s, . . . , x̂n = H(xn)
s

s
R←− Zp

ẑπ(1) = x̂π(1)
k
, . . . , ẑπ(n) = x̂π(n)

k

k
R←− Zp

π
R←− Perm[n]

zπ(i) ← ẑπ(i)
s−1
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Comparison of mqRPMT from cwPRF and pOPRF

Primitive Assumption implied by X25519 Bloom filter optimization
cwPRF DDH ✓ ✓
pOPRF DDH 7 7

the pOPRF-based mqRPMT is more of theoretical interest
It can be viewed as a counterpart of OPRF-based mqPMT construction
So far, we only know how to build pOPRF based on assumptions with nice algebra
structure, but not from fast primitives such as OT or VOLE.

This somehow explains the efficiency gap between mqPMT and mqRPMT.
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Sigma-mqPMT

Given the efficiency gap between PSI and other PSO protocols, it is intriguing to study
the connection between mqPMT and mqRPMT.

Towards this goal, we first abstract a category of mqPMT called Sigma-mqPMT.

P1 (server)
Y = (y1, . . . , yn1)

P2 (client)
X = (x1, . . . , xn2)

a← Encode(Y )
a

qi ← GenQuery(a, xi)
q⃗ = {q1, . . . , qn2}

z⃗ = {z1, . . . , zn2}
zi ← Response(qi) ei ← Test(a, zi)

Reusable: a (best interpreted as encoding of Y ) can be safely reused.
Context-independent: qi is only related to a, xi under test and P2’s randomness.
Stateless test: Test algorithm can work without knowing (xi, qi).
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mqRPMT∗ from Sigma-mqPMT

P1 (server)
Y = (y1, . . . , yn1)

P2 (client)
X = (x1, . . . , xn2)

a← mqPMT.Encode(Y )
a

qi ← mqPMT.GenQuery(a, xi)
q⃗ = {q1, . . . , qn2}

π
R←− Perm[n2]

z⃗∗ = {zπ(1), . . . , zπ(n2)}

e∗i ← mqPMT.Test(a, z∗i )
e⃗∗ = {e∗1, . . . , e∗n2

}
e⃗ = {e∗π−1(i)}

n2
i=1

Via the “permute-then-test” approach, we can tweak Sigma-mqPMT to mqRPMT∗

(additionally reveal intersection size to client).
translate a category of PSI protocols (such as [Mea86, FIPR05, CLR17]) to other
PSO protocols (allowing both parties learn the intersection size).
make the initial step towards establishing the connection between mqRPMT and
mqPMT.
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Summary of Main Results

mqRPMT

commutative
weak PRF

permuted
oblivious PRF

enhanced version

PSI/PSU PSI-card-[sum/secret-sharing] PSI-card

OT OT+SS

Sigma-mqPMT

permuted
mqPMT

shuffle-then-test

mqRPMT∗
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Cryptographic Engineering Matters
We implement our PSO framework via the following vein

EC groups DDH-based cwPRF ; mqRPMT ; PSO framework

1 NIST P-256 ♦ ▼ (also known as secp256r1 and prime256v1)
hash-to-point operation is expensive ≈ non-fixed Exp
point compression halves communication cost; point decompression is expensive ≈ non-fixed Exp

2 Curve25519 ⋆ (de facto alternative of NIST P-256)
numerous merits: no backdoor, fast Exp, immunity against side-channel attacks
allow “Exp” with only X-coordinate ; halve communication & no decompression
any 32-byte bit array corresponds to the X-coordinate of a valid EC point ;
hash-to-point operation is almost free

For the first time, Curve25519 fully unleashes its power in PSO area.
Correct the prejudice that “public-key operations are expensive”:

By leveraging optimized implementation, their performances are comparable
with symmetric-key operations
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Implementation Features

Modular design: admit flexible combination to support various scenarios

Minimum dependency: only require OpenSSL and OpenMP

Multi-platforms: run smoothly on Linux and MacOS

Rich functionality: support all PSO operations

Highly parallelizable: scalable ; support large-scale applications
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Implementation Details

Dev/Test environment Other Parameters
CPU = Intel i7 2.50 GHZ κ = 128, λ = 40

Physical core = 8 item length= 128 bits
RAM = 8GB set sizes= {212, 216, 220}

OS = Ubuntu 20.04 LAN = 10Gbps, WAN = 50Mbps, RTT= 80ms

Protocols:
mqRPMT, PSI, PSI-card, PSI-card-sum, PSU, Private-ID

Test items:
Functionality
Computation cost: total running time
Communication cost: sum of two parties
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Core protocol: mqRPMT

Protocol T
Running time (s) Comm. (MB)

LAN WAN total
212 216 220 212 216 220 212 216 220

mqRPMT♦
1 0.50 7.20 114.16 1.39 9.68 136.27

0.52 8.35 133.62 0.31 3.89 62.09 1.14 6.54 86.60
4 0.22 2.37 40.41 1.11 5.08 62.77

Speedup 1.6-2.3 × 1.9-3.0 × 1.8-2.8 × 1.2-1.3 × 1.5-1.9 × 1.6-2.2 × – – –

mqRPMT▼
1 0.50 8.00 128.00 1.35 10.15 141.52

0.27 4.35 69.62 0.32 5.05 80.69 1.18 7.11 94.19
4 0.23 3.54 58.40 1.08 5.54 71.26

Speedup 1.6-2.2 × 1.6-2.3 × 1.6-2.2 × 1.1-1.3× 1.4-1.8 × 1.5-2 × – – –

mqRPMT⋆
1 0.26 3.51 54.85 0.81 5.41 68.68

0.26 4.23 67.662 0.15 1.79 28.24 0.75 3.83 41.38
4 0.10 1.07 15.32 0.72 3.09 28.31

Speedup 1.7-2.6 × 2.0-3.3 × 1.9-3.6 × 1.1-1.1 × 1.4-1.8 × 1.7-2.4 × – – –

strict linear complexity & high parallelism
220 scale: #time < 15s using 4 threads on laptop, #communication < 70M
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PSI: Performance and Comparison

PSI
Running time (s) Comm. (MB)

LAN WAN total
212 216 220 212 216 220 212 216 220

[PRTY19]⋆ 5.51 88.64 1418.20 5.82 90.79 1498.67 0.30 4.74 76.60
Our PSI♦ 0.50 7.24 114.66 1.71 10.50 142.45 0.68 10.61 169.37
Our PSI▼ 0.55 8.04 128.18 1.73 11.02 148.18 0.42 6.61 105.23
Our PSI⋆ 0.29 3.56 55.11 1.19 6.38 75.56 0.41 6.48 103.31
DH-PSI⋆ 0.22 3.39 54.79 0.92 5.57 69.31 0.28 4.57 74.1

compared to existing DH-PSI implementation: # time speeds up 4.9-25.7×

PSI
Running time (ms) Comm. (KB)

LAN WAN total
28 29 210 28 29 210 28 29 210

[RT21]⋆ 50.0 71.0 147.3 224.1 260.2 457.9 17.9 34.1 66.3
Our PSI⋆ 41.9 69.5 99.3 577.0 582.9 646.1 38.6 63.5 113.3
DH-PSI⋆ 16.49 31.80 56.91 210.42 227.33 252.32 18.48 36.68 72.8

achieve the fastest speed in small set setting (< 210)
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PSI-card: Performance and Comparison

Our framework unifies and explains prior protocols
DDH-cwPRF-based mqRPMT: recover PSI-card [HFH99] (add Bloom filter
optimization)
DDH-pOPRF-based mqRPMT: recover PSI-card [CGT12]

PSI-card
Running time (s) Comm. (MB)

LAN WAN total
212 216 220 212 216 220 212 216 220

[GMR+21] 1.00 8.41 126.01 8.60 27.46 323.52 2.93 55.49 1030
Our PSI-card♦ 0.49 7.20 114.31 1.30 9.68 136.06 0.53 8.59 137.31
Our PSI-card▼ 0.53 8.00 128.00 1.35 10.16 141.31 0.28 4.58 73.20
Our PSI-card⋆ 0.27 3.51 54.89 0.82 5.42 68.31 0.27 4.46 71.30

compared to the SOTA
# time speeds up 2.3-10.5×, # communication reduces 11.3-15.2×
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PSI-card-sum: Performance and Comparison

PSI-card-sum
Running time (s) Comm. (MB)

LAN WAN total
212 216 220 212 216 220 212 216 220

[IKN+20]▼ (deployed) 23.64 176.34 – 30.10 186.29 – 2.72 43.24 –
Our PSI-card-sum♦ 0.51 7.22 113.66 1.46 9.68 136.27 0.65 10.12 161.40
Our PSI-card-sum▼ 0.57 8.12 129.66 1.94 11.83 157.66 0.39 6.10 97.34
Our PSI-card-sum⋆ 0.31 3.73 57.44 1.36 6.53 76.16 0.37 5.75 95.30

compared to the SOTA
# time speeds up 22.1-76.3×, # communication reduces 7.4-7.5×
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PSU: Performance and Comparison

PSU
Running time (s) Comm. (MB)

LAN WAN total
212 216 220 212 216 220 212 216 220

[GMR+21] 1.16 10.06 151.34 10.34 38.52 349.43 3.85 67.38 1155
[ZCL+23]♦ 4.87 12.19 141.38 5.78 15.75 182.88 1.35 21.41 342.38
[ZCL+23]▼ 5.10 15.13 187.29 5.82 17.37 210.06 0.77 12.20 195.17
[JSZ+22] 2.29 8.50 516.04 5.33 27.00 736.30 3.59 70.37 1341.55
Our PSU♦ 0.52 7.27 114.44 1.70 10.56 143.29 0.69 10.61 169.37
Our PSU▼ 0.57 8.04 128.20 1.76 10.92 148.15 0.42 6.61 105.23
Our PSU⋆ 0.30 3.55 55.48 1.19 6.38 74.96 0.41 6.48 103.31

compared to the SOTA: first achieves strict linear complexity
# time speeds up 2.4-17×, # communication reduces 2×
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Private-ID: Performance and Comparison

Private-ID
Running time (ms) Comm. (MB)

LAN WAN total
212 216 220 212 216 220 212 216 220

[GMR+21] 1.65 11.023 158.76 13.82 43.00 385.12 4.43 76.57 1293
[BKM+20]⋆ 2.21 37.56 671.75 7.98 46.97 710.94 1.00 15.97 226.70

Our Private-ID♦ 0.55 7.28 115.63 5.34 14.83 163.43 3.12 16.91 237.55
Our Private-ID▼ 0.65 8.43 134.16 5.69 15.68 169.05 2.85 12.91 173.50
Our Private-ID⋆ 0.34 3.78 59.76 5.04 10.87 94.89 2.82 12.74 171.54

distributed OPRF: SOTA OPRF [RR22] built from VOLE and improved OKVS
PSU protocol: cwPRF-based mqRPMT

compared to the SOTA
# time speeds up 2.7-4.9×, # communication is slightly larger
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Summary of This Work

Unified PSO framework from mqRPMT
show mqRPMT is complete for all PSO protocols
greatly reduce the deployment and maintaining costs of PSO

Generic construction of mqRPMT
cwPRF: demonstrate that DDH assumption is truly a golden goose
permuted OPRF: make the concept of OPRF more useful; somewhat explain
inefficiency of PSU/PCSI
mqRPMT∗ from Sigma-mqPMT: a initial step towards the connection to mqPMT

Efficient implementation
identify expensive ECC operations in cheap disguise
find the perfect match: Curve25519
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About Research

From [Grothendieck], I have learned not to take glory in the difficulty of a proof.

Figure: Pierre Deligne

Likewise, we do not take shame in the simplicity of our construction :-)
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Thanks for Your Attention!
Any Questions?

http://eprint.iacr.org/2022/652
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