
Linear Private Set Union from Multi-Query
Reverse Private Membership Test

Yu Chen
Shandong University

joint work1 with Cong Zhang, Weiran Liu, Min Zhang and Dongdai Lin
1USENIX Security 2023: Linear Private Set Union from Multi-Query Reverse Private Membership Test.

Cong Zhang, Yu Chen, Weiran Liu, Min Zhang, Dongdai Lin.
1 / 48

Outline

1 Preliminary

2 Background

3 Starting Point: KRTW Protocol

4 Generic Construction of PSU

5 Two Instantiations of Generic Framework

6 Improvement and Optimization

7 Performance

2 / 48

Outline

1 Preliminary

2 Background

3 Starting Point: KRTW Protocol

4 Generic Construction of PSU

5 Two Instantiations of Generic Framework

6 Improvement and Optimization

7 Performance

3 / 48

MPC with Semi-Honest Security

Π for f(x1, . . . , xn)

Pi’s view includes
private input
random tape

incoming messages

P1(r1)

x1

output1(x1, . . . , xn)
f1(x1, . . . , xn)

Pi(ri)

xi

outputi(x1, . . . , xn)
fi(x1, . . . , xn)

Pn(rn)

xn

outputn(x1, . . . , xn)
fn(x1, . . . , xn)

.

.

all Pi are semi-honest (honest but curious)
Pi learns no more information other than his output and private input

4 / 48

MPC with Semi-Honest Security

Π for f(x1, . . . , xn)

Pi’s view includes
private input
random tape

incoming messages

P1(r1)

x1

output1(x1, . . . , xn)
f1(x1, . . . , xn)

Pi(ri)

xi

outputi(x1, . . . , xn)
fi(x1, . . . , xn)

Pn(rn)

xn

outputn(x1, . . . , xn)
fn(x1, . . . , xn)

.

.

all Pi are semi-honest (honest but curious)
Pi learns no more information other than his output and private input

Definition 1 (Semi-honest Security)
Π securely realizes probabilistic f in the presence of semi-honest adversaries if there
exists a PPT simulator Sim such that for all inputs x1, . . . , xn and all i ∈ [n]:
(ViewPi(x1, . . . , xn), output(x1, . . . , xn)) ≈c,s (Sim(i, xi, fi(x1, . . . , xn)), f(x1, . . . , xn))

4 / 48

MPC with Semi-Honest Security

Π for f(x1, . . . , xn)

Pi’s view includes
private input
random tape

incoming messages

P1(r1)

x1

output1(x1, . . . , xn)
f1(x1, . . . , xn)

Pi(ri)

xi

outputi(x1, . . . , xn)
fi(x1, . . . , xn)

Pn(rn)

xn

outputn(x1, . . . , xn)
fn(x1, . . . , xn)

.

.

all Pi are semi-honest (honest but curious)
Pi learns no more information other than his output and private input

Definition 1 (Semi-honest Security)
Π securely realizes deterministic f in the presence of semi-honest adversaries if there
exists a PPT simulator Sim such that for all inputs x1, . . . , xn and all i ∈ [n]:

ViewPi(x1, . . . , xn) ≈c,s Sim(i, xi, fi(x1, . . . , xn))
4 / 48

Oblivious Transfer

1-out-of 2 OT [Rab05] enables the receiver learns only one messages from sender,
while sender learns nothing.

OT
b

mb

(m0,m1)
receiver sender

OT is complete for MPC [Kil88].
Private-information retrieval (PIR) is weaker than OT: it only cares privacy of
receiver

OT does not belong to Minicrypt ; expensive public-key operations are unavoidable,
while real applications need a large number of OT

[IKNP03] proposed Ishai-Kilian-Nissim-Petrank OT extension: generate many OT
efficiently from O(κ) number of base OT ⇒ OTe is cheap

5 / 48

Oblivious Transfer

1-out-of 2 OT [Rab05] enables the receiver learns only one messages from sender,
while sender learns nothing.

OT
b

mb

(m0,m1)
receiver sender

OT is complete for MPC [Kil88].
Private-information retrieval (PIR) is weaker than OT: it only cares privacy of
receiver

OT does not belong to Minicrypt ; expensive public-key operations are unavoidable,
while real applications need a large number of OT

[IKNP03] proposed Ishai-Kilian-Nissim-Petrank OT extension: generate many OT
efficiently from O(κ) number of base OT ⇒ OTe is cheap

5 / 48

Oblivious Transfer

1-out-of 2 OT [Rab05] enables the receiver learns only one messages from sender,
while sender learns nothing.

OT
b

mb

(m0,m1)
receiver sender

OT is complete for MPC [Kil88].
Private-information retrieval (PIR) is weaker than OT: it only cares privacy of
receiver

OT does not belong to Minicrypt ; expensive public-key operations are unavoidable,
while real applications need a large number of OT

[IKNP03] proposed Ishai-Kilian-Nissim-Petrank OT extension: generate many OT
efficiently from O(κ) number of base OT ⇒ OTe is cheap

5 / 48

Private Equality Test Protocol

PEQT [PSSZ15] enables P1 and P2 check if their ℓ-bits elements x and y are equal.

PEQT
x

b := x
?
= y

y

P1 P2

[PSSZ15] showed how to build PEQT by invoking 1-out-of-2 random OT ℓ times

OT

P1(x) P2(y)
{mi,0,mi,1}i∈[ℓ]

sample from {0, 1}σ

{yi}i∈[ℓ]

{mi,yi}i∈[ℓ]

⊕ℓ
i=1mi,yi⊕ℓ

i=1mi,xi

compare

6 / 48

Private Equality Test Protocol

PEQT [PSSZ15] enables P1 and P2 check if their ℓ-bits elements x and y are equal.

PEQT
x

b := x
?
= y

y

P1 P2

[PSSZ15] showed how to build PEQT by invoking 1-out-of-2 random OT ℓ times

OT

P1(x) P2(y)
{mi,0,mi,1}i∈[ℓ]

sample from {0, 1}σ

{yi}i∈[ℓ]

{mi,yi}i∈[ℓ]

⊕ℓ
i=1mi,yi⊕ℓ

i=1mi,xi

compare

6 / 48

Oblivious Pseudorandom Functions

OPRF [FIPR05] enables server obtain a key k and client evaluate obliviously.

OPRF

PRF F : K ×D → Rserver
client

k
R←− K

xi

yi = Fk(xi)

OPRF is a powerful tool in MPC (see [CHL22] for a good survey)
many variants: batch/programmable/permuted/distributed OPRF
fast construction from OT or VOLE

7 / 48

Oblivious Pseudorandom Functions

OPRF [FIPR05] enables server obtain a key k and client evaluate obliviously.

OPRF

PRF F : K ×D → Rserver
client

k
R←− K

xi

yi = Fk(xi)

OPRF is a powerful tool in MPC (see [CHL22] for a good survey)
many variants: batch/programmable/permuted/distributed OPRF
fast construction from OT or VOLE

7 / 48

Outline

1 Preliminary

2 Background

3 Starting Point: KRTW Protocol

4 Generic Construction of PSU

5 Two Instantiations of Generic Framework

6 Improvement and Optimization

7 Performance

8 / 48

Private Set Union
sender receiver

X Y

{x1, . . . , xn2} {y1, . . . , yn1}

PSU

X Y?

In this work, we focus on the balanced setting, i.e., n1 ≈ n2. For simplicity, we assume
n1 = n = n2 hereafter.

9 / 48

Applications of PSU

PSU has found numerous applications, which include but not limit to:
information security risk assessment [LV04]
IP blacklist and vulnerability data aggregation [HLS+16]
joint graph computation [BS05]
distributed network monitoring [KS05]
building block for private DB supporting full join [KRTW19]
private-ID [GMR+21]

10 / 48

Previous Work

According to the underlying techniques, existing PSU protocols can be divided into two
categories:

Public-key techniques (e.g. AHE) [KS05, Fri07, DC17]
Pros. good asympotic complexity: “almost” linear computation/communication
complexity
Cons. poor concrete efficiency: O(λ) AHE operations per set element

Symmetric-key techniques coupled with OT [KRTW19, GMR+21, JSZ+22]
Pros. (i) good concrete efficiency: running time is several orders of magnitude faster
than AHE-based protocols;
Cons. poor asympotic complexity: communication/computation complexity are
superlinear

Protocols based on symmetric-key techniques are plausibly quantum secure.

11 / 48

Motivation

Can we attain the-best-of-two-worlds: designing PSU protocols with optimal linear
complexity and good concrete efficiency?

12 / 48

Outline

1 Preliminary

2 Background

3 Starting Point: KRTW Protocol

4 Generic Construction of PSU

5 Two Instantiations of Generic Framework

6 Improvement and Optimization

7 Performance

13 / 48

Review of KRTW (Kolesnikov-Rosulek-Trieu-Wang) Protocol

RPMTserver client
Y

ei = 1 ⇐⇒ xi ∈ Y
xi

receiver senderY = {y1, . . . , yn} X = {x1, . . . , xn}

OT

1− ei

zi

(xi,⊥)

zi =

{
xi ei = 0
⊥ ei = 1

repeat the 1-vs-many PSU n times independently

14 / 48

Zoom In of the Sub-protocol RPMT

receiver Y = {y1, . . . , yn} senderX = {x1, . . . , xn}

OPRF

F : K ×D → {0, 1}ℓ

k
x

Fk(x)

s
R←− F2ℓ

indication string
of Y

P ← Interpolate{(yi, s⊕ Fk(yi))i∈[n]}
P

s∗ ← P (x)⊕ Fk(x)PEQT
s

b := s
?
= s∗

s∗

Usage of OPRF. Without OPRF masking, s may reveal to sender if xi ∈ Y (by
evaluating P (xi)) ; reveal all yi ∈ Y

15 / 48

Zoom In of the Sub-protocol RPMT

receiver Y = {y1, . . . , yn} senderX = {x1, . . . , xn}

OPRF

F : K ×D → {0, 1}ℓ

k
x

Fk(x)

s
R←− F2ℓ

indication string
of Y

P ← Interpolate{(yi, s⊕ Fk(yi))i∈[n]}
P

s∗ ← P (x)⊕ Fk(x)PEQT
s

b := s
?
= s∗

s∗

Usage of OPRF. Without OPRF masking, s may reveal to sender if xi ∈ Y (by
evaluating P (xi)) ; reveal all yi ∈ Y

15 / 48

Correctness and Security Analysis

Correctness. Consider the following two cases:
If x ∈ Y ⇒ s∗ = P (yi)⊕ Fk(yi) = s⊕ Fk(yi)⊕ Fk(yi) = s.

If x /∈ Y ⇒ Fk(x) is pseudorandom. Via real-or-random argument, we conclude
that for a tuple of PPT (sender, receiver), Pr[s∗ = Fk(x)⊕ P (x) = s] ≤ 1/2ℓ in
computational sense.

x ∈ Y ⇐⇒ s = s∗

Security. Follows the semi-honest security of OPRF and PEQT.

16 / 48

Complexity Analysis

OPRF and PEQT are fast cryptographic protocols
The computation bottleneck lies at polynomial interpolation of arbitrary n points

trivial algorithm using Langrange formula requires O(n2)

fast algorithm using FFT requires O(n log2 n)
The communication bottleneck lies at the representation of degree-n polynominal

O(n) field elements in F2ℓ

In sum, KRTW protocol has O(n2 log2 n) computation complexity and O(n2)
communication complexity2

2In [KRTW19], hash-to-bin technique was used to reduce complexity. However, Jia et al. [JSZ+22]
pin-pointed that the improved protocol is not secure.

17 / 48

Outline

1 Preliminary

2 Background

3 Starting Point: KRTW Protocol

4 Generic Construction of PSU

5 Two Instantiations of Generic Framework

6 Improvement and Optimization

7 Performance

18 / 48

PSU from mqRPMT

mqRPMTserver client
Y

X = {x1, . . . , xn}
e⃗ = (e1, . . . , en)

receiver sender

yields PSU coupled with OT (flipping e⃗): receiver obtains X\Y

OT

1− ei
(xi,⊥)

zi
zi =

{
xi ei = 0
⊥ ei = 1

19 / 48

How to Batch mqRPMT to Build Efficient mqRPMT

Root of inefficiency for KRTW protocol
1 degree-n polynominal interpolation is heavy
2 have to repeat polynominal interpolation n times, while batch the basic RPMT

protocol is not trivial:
sender learns the purported indication string s∗ in clear ⇒ direct reusing P let
sender be able to decide if xi ∈ Y ∧ xj ∈ Y by computing and compairing s∗ ;
compromise receiver’s privacy

Our idea is based on two key observations.
1st Observation. Polynomial interpolation plays the role of oblivious key-value
store.
2nd Observation. The usage of OPRF is three-fold:

receiver uses OPRF to derive n pseudorandom one-time pads, then encrypts the
same s∗ into n ciphertexts under these one-time pads.
sender uses OPRF to decrypt a ciphertext obliviously.
OPRF infuses polynomial interpolation with randomness to ensure the correctness.

20 / 48

How to Batch mqRPMT to Build Efficient mqRPMT

Root of inefficiency for KRTW protocol
1 degree-n polynominal interpolation is heavy
2 have to repeat polynominal interpolation n times, while batch the basic RPMT

protocol is not trivial:
sender learns the purported indication string s∗ in clear ⇒ direct reusing P let
sender be able to decide if xi ∈ Y ∧ xj ∈ Y by computing and compairing s∗ ;
compromise receiver’s privacy

Our idea is based on two key observations.
1st Observation. Polynomial interpolation plays the role of oblivious key-value
store.
2nd Observation. The usage of OPRF is three-fold:

receiver uses OPRF to derive n pseudorandom one-time pads, then encrypts the
same s∗ into n ciphertexts under these one-time pads.
sender uses OPRF to decrypt a ciphertext obliviously.
OPRF infuses polynomial interpolation with randomness to ensure the correctness.

20 / 48

Oblivious Key-Value Store

K × V

(x1, y1)...
(xi, yi)...
(xn, yn)

A

d1

...

dj

...

dm

DEncode y
Decode(D,x) rate n/m

1 is optimal

Correctness. For any A = {(x1, y1), . . . , (xn, yn)} and any xi ∈ {x1, . . . , xn}:
Pr[Decode(D,xi) = yi] ≥ 1− negl(λ), where D ← Encode(A).

Randomness. For any A = {(x1, y1), . . . , (xn, yn)} and any x /∈ {x1, . . . , xn}:
Decode(D,x) ≈s UV , where D ← Encode(A).

Obliviousness. For any (x01, . . . , x
0
n) ̸= (x11, . . . , x

1
n):

Encode((x01, y1), . . . , (x0n, yn)) ≈c Encode((x11, y1), . . . , (x1n, yn)), where yi
R←− V .

21 / 48

OKVS Off-the-Shelf

Table: Comparison of Different OKVS

scheme rate encoding decoding randomness obliviousness
Interpolation Polynomial 1 O(n log2 n) O(logn) 7 ✓

Garbled Bloom Filter [DCW13] O(1/λ) O(λn) O(λ) ✓ ✓
Garbled Cuckoo Table [PRTY20] 0.4 O(λn) O(λ) ✓ ✓

3H-GCT [GPR+21] 0.81 O(λn) O(λ) ✓ ✓
RR22 [RR22] 0.81 O(λn) O(λ) ✓ ✓

RB-OKVS [BPSY23] 0.97 O(λn) O(λ) ✓ ✓

n is # [key-value pairs]. λ is the statistical security parameter (e.g. λ = 40).

Drop-in replacement of polynomial interpolation with better OKVS will improve
efficiency immediately.

22 / 48

How to Batch?

Rough idea to bypass the root of efficiency
switch the role of decryption: let receiver decrypt ciphertexts then match the
results with the indication string.

The idea is problematic since it is insecure even against a semi-honest receiver.
receiver records the correspondence between yi and OKVS(yi) ; receiver learns
sender’s private input x by simple look-up when x ∈ Y , rather than merely the
fact that x ∈ Y .

We overcome this difficulty in two steps:
1 re-factor the functionality of OPRF to encryption and oblivious decryption

functionality.
2 merge the oblivious decryption functionality and PEQT into a new functionality

called vector oblivious decryption-then-matching (VODM) functionality.

23 / 48

Encryption Scheme

SKE/PKE scheme consists of three PPT algorithms:
KeyGen(1κ): output a secret key k or a keypair (pk, sk).
Encrypt(pk/k,m): output a ciphertext c of m.
Decrypt(sk/k, c): decrypt c to recover m.

Single-message multi-ciphertext pseudorandomness. For any PPT A = (A1,A2),
its advantage is negl(κ).

AdvA(κ) = Pr

β = β′ :

k/(pk, sk)← KeyGen(1κ);
(m, state)← A1(κ/pk);
β ← {0, 1};
c∗i,0 ← Encrypt(k/pk,m), c∗i,1 ← C, for i ∈ [n];

β′ ← A2(state, {c∗i,β}i∈[n])

− 1

2

Single-message multi-ciphertext pseudorandomness is a mild property satisfied by
most IND-CPA secure SKE/PKE, such as PRF-based SKE, ElGamal PKE based
on DDH and Regev’s PKE based on LWE.

24 / 48

Vector Oblivious Decrypt-then-Match (VODM)

VODM w.r.t. encryption scheme (KeyGen,Encrypt,Decrypt) is defined as below:

VODM

receiver sender

c = (c1, . . . , cn) ∈ Cn
k/sk, m ∈M

e = (e1, . . . , en) ∈ {0, 1}n

ei =

{
1 if Decrypt(k/sk, ci) = m
0 if Decrypt(k/sk, ci) ̸= m

25 / 48

mqRPMT from OKVS+Encryption+VODM

VODM

receiver sender

Y = (y1, . . . , yn) X = (x1, . . . , xn)

{c∗i ← Decode(D,xi)}ni=1)
k/sk, s ∈M

e = (e1, . . . , en) ∈ {0, 1}n

k/(pk, sk)← KeyGen(1κ)
s

R←−M
{ci ← Encrypt(k/pk, s)}ni=1

D ← Encode({yi, ci}ni=1)

26 / 48

Outline

1 Preliminary

2 Background

3 Starting Point: KRTW Protocol

4 Generic Construction of PSU

5 Two Instantiations of Generic Framework

6 Improvement and Optimization

7 Performance

27 / 48

Our Focus

Choose/Design appropriate primitives to realize the framework.
1 OKVS: any off-the-shelf OKVS is fine.
2 Encryption scheme: the ones satisfy single-message multi ciphertext

pseudorandomness.
3 VODM: design w.r.t. the chosen encryption scheme

We only need to foucs on step 2 and 3.

28 / 48

mqRPMT from SKE and Generic 2PC

receiver sender

Y = (y1, . . . , yn) X = (x1, . . . , xn)

k ← KeyGen(1κ)
s

R←−M , {zi ← Encrypt(k, s)}ni=1

Encode((y1, z1), . . . , (yn, zn))→ D
{Decode(D,xi)→ ci}ni=1

2PC
GC or GMW

bi ← Decrypt(k, ci) ?
= s

c = (c1, . . . , cn)
k, s ∈M

e = (e1, . . . , en) ∈ {0, 1}n

SKE: choose LowMC for small circuit size
generic 2PC: choose garbled circuit or GMW

29 / 48

mqRPMT from Rerandomizable PKE

receiver sender

Y = (y1, . . . , yn) X = (x1, . . . , xn)

(pk, sk)← KeyGen(1κ)
s

R←−M , {zi ← Encrypt(pk, s)}ni=1

Encode((y1, z1), . . . , (yn, zn))→ D
{Decode(D,xi)→ ci}ni=1

c′i ← ReRand(pk, ci)
mi ← Decrypt(sk, c′i)

ei := si
?
= s

ReRand(pk, c) → c′

Decrypt(sk, c′) = m = Decrypt(sk, c)
c′ ≈s Encrypt(pk,m)

c′i s.t. ei = 1 does not leak information since receiver knows s
c′i s.t. ei = 0 does leak extra information

but such leakage is not harmful for PSU since receiver eventually learns xi /∈ Y

re-randomizable PKE: exponential ElGamal, Regev’s PKE
30 / 48

mqRPMT from Rerandomizable PKE

receiver sender

Y = (y1, . . . , yn) X = (x1, . . . , xn)

(pk, sk)← KeyGen(1κ)
s

R←−M , {zi ← Encrypt(pk, s)}ni=1

Encode((y1, z1), . . . , (yn, zn))→ D
{Decode(D,xi)→ ci}ni=1

c′i ← ReRand(pk, ci)
mi ← Decrypt(sk, c′i)

ei := si
?
= s

ReRand(pk, c) → c′

Decrypt(sk, c′) = m = Decrypt(sk, c)
c′ ≈s Encrypt(pk,m)

c′i s.t. ei = 1 does not leak information since receiver knows s
c′i s.t. ei = 0 does leak extra information

but such leakage is not harmful for PSU since receiver eventually learns xi /∈ Y

re-randomizable PKE: exponential ElGamal, Regev’s PKE
30 / 48

mqRPMT from Rerandomizable PKE

receiver sender

Y = (y1, . . . , yn) X = (x1, . . . , xn)

(pk, sk)← KeyGen(1κ)
s

R←−M , {zi ← Encrypt(pk, s)}ni=1

Encode((y1, z1), . . . , (yn, zn))→ D
{Decode(D,xi)→ ci}ni=1

c′i ← ReRand(pk, ci)
mi ← Decrypt(sk, c′i)

ei := si
?
= s

ReRand(pk, c) → c′

Decrypt(sk, c′) = m = Decrypt(sk, c)
c′ ≈s Encrypt(pk,m)

c′i s.t. ei = 1 does not leak information since receiver knows s
c′i s.t. ei = 0 does leak extra information

but such leakage is not harmful for PSU since receiver eventually learns xi /∈ Y

re-randomizable PKE: exponential ElGamal, Regev’s PKE
30 / 48

Outline

1 Preliminary

2 Background

3 Starting Point: KRTW Protocol

4 Generic Construction of PSU

5 Two Instantiations of Generic Framework

6 Improvement and Optimization

7 Performance

31 / 48

Retrospect of the Generic Framework

Previous two mqRPMT instantiations achieve linear complexity and enjoy good
concrete efficiency.

Can we further generalize the framework?
Can we improve the efficiency of concrete instantiations?

High level idea underlying our mqRPMT design
1 receiver creates a membership relation R for his set Y s.t. R(x) = 1 ⇐⇒ x ∈ Y .
2 receiver encrypts elements in Y w.r.t. R and sends the “encoding” of resulting

ciphertexts to the sender.
3 sender is able to retrieve the ciphertext of his elements.
4 perform oblivious decrypt-then-match

We realize the right encryption scheme needed is membership encryption (ME).
ME for set X encrypts an element x into a ciphertext, which decrypts to “1” if
x ∈ X and to “0” (intuitively).

32 / 48

Membership Encryption

Definition 2 (Membership Encryption (Symmetric ME))
ME for set X consists of three PPT algorithms (with X as an implicit input):

KeyGen(1κ): outputs a key k.
Enc(k, x): on input a key k and an element x ∈ X, outputs a ciphertext c ∈ C.
For uttermost generality, the behavior of Enc on x /∈ X is unspecified.
Dec(k, c): outputs “1” indicates c is an encryption of some x ∈ X and “0” if not.

Correctness. ∀x ∈ X, Pr[Dec(k, c = Enc(k, x)) = 1] = 1, k ← KeyGen(1κ).
Consistency. ∀x /∈ X, Pr[Dec(k, c) = 0] ≥ 1− ε(κ): k ← KeyGen(1κ), c R←− C.
Multi-element pseudorandomness. ∀ distinct x1, . . . , xn ∈ X

{Enc(k, xi)}i∈[n] ≈c UCn , k ← KeyGen(1κ)

Symmetric ME naturally extends to the public-key setting:
KeyGen outputs (pk, sk), in which pk is used to encrypt and sk is used to decrypt.

33 / 48

Generic Construction of ME

The essence of ME is to encrypt element’s membership relation, rather than the
element itself.

Membership relation can be created by designing a mapping H from elements to
X. Basically, there are two extreme cases of mapping.

lossy mapping: select a single indication string s as the characteristic of X, then
map all elements to s, i.e., H : xi → s.
injective mapping: select n indication strings si as the characteristic of X, then map
elements to distinct indication strings, i.e., H : xi → si.

We then present various constructions of ME by mixing encryption schemes and
membership mapping.

34 / 48

ME from Probabilistic Encryption and Lossy Mapping
ME from probabilistic SKE and lossy mapping.

KeyGen(1κ): runs SKE.KeyGen(1κ)→ kske, picks s R←−M , sets H : X → s,
outputs k = (kske,H).
Enc(k, x): parses k = (kske,H), outputs c← SKE.Enc(kske,H(x)).
Dec(k, c): parses k = (kske,H), outputs ‘1’ iff SKE.Dec(kske, c) = s.

ME from probabilistic PKE and lossy mapping.
KeyGen(1κ): runs PKE.KeyGen(1κ)→ (pkpke, skske), picks s R←−M , sets
H : X → s, outputs pk = pkpke and sk = (skpke,H).
Enc(pk, x): parses pk = pkpke, outputs c← PKE.Enc(pkpke,H(x)).
Dec(sk, c): parses sk = (skpke,H), outputs ‘1’ iff PKE.Dec(skpke, c) = s.

Lemma. If SKE/PKE satisfies single-message multi-ciphertext pseudorandomness, then
the ME construction satisfies multi-element pseudorandomness with consistency error
1/|M |.

35 / 48

Discussion

The above ME constructions are exactly the backbones of two instantiations of
mqRPMT.
ME requires multi-element pseudorandomness

the use of lossy mapping inherently stipulates that the accompanying encryption
schemes must be probabilistic to satisfy single-message multi-ciphertext
pseudorandomness
; ciphertext expansion is unavoidable
⇒ the size of OKVS increases

Observation: if adopting injective mapping, then ME can be built from determin-
istic encryption schemes satisfying multi-message multi-ciphertext pseudorandom-
ness.

36 / 48

ME from Deterministic Encryption and Injective Mapping

ME from deterministic SKE and injective mapping.
KeyGen(1κ): picks kske

R←− K, picks s R←−M , sets H : xi → i, outputs
sk = (kske,H).
Enc(k, x): outputs c← SKE.Enc(kske,H(x)).
Dec(sk, c): outputs ‘1’ iff SKE.Dec(kske, c) ∈ [n], where n = |X|.

Lemma: If SKE/PKE satisfies multi-message multi-ciphertext pseudorandomness, then
the ME construction satisfies multi-element pseudorandomness with consistency error
n/|M |.

SKE candidate: PRP-based construction such as AES ; compact ciphertext
PKE candidate: unclear for the time being (deterministic PKE?)

37 / 48

Vector Oblivious Decrypt

Since the decryption result of ME is only 1-bit to indicate membership, thus the
accompanying VODM can be simplified to VOD.

VOD

receiver sender

c = (c1, . . . , cn) ∈ Cn
k/sk, m ∈M

e = (e1, . . . , en) ∈ {0, 1}n

bi = Decrypt(k/sk, ci)

38 / 48

Outline

1 Preliminary

2 Background

3 Starting Point: KRTW Protocol

4 Generic Construction of PSU

5 Two Instantiations of Generic Framework

6 Improvement and Optimization

7 Performance

39 / 48

Performance
Comm. (MB) Running time (s)

R S LAN 1Gbps 100Mbps 10Mbps
T = 1 T = 8 T = 1 T = 8 T = 1 T = 8 T = 1 T = 8

n Protocol
setup online setup online

total
setup online setup online setup online setup online setup online setup online setup online setup online

KRTW 0.02 4.17 0.01 29.63 33.8 0.07 3.5 0.03 1.07 0.49 16.13 0.37 14.06 0.83 27.36 0.72 24.66 0.81 55.9 0.73 55.32

GMRSS 0.02 5.89 0.02 7.96 13.85 0.1 1.01 0.04 0.42 0.66 1.96 0.46 1.28 1 3.53 0.91 2.97 1.06 14.44 0.93 13.97

JSZDG-R 0.01 4.65 0.01 5.63 10.28 0.07 1.81 0.02 0.52 0.27 2.65 0.23 1.34 0.49 4.19 0.41 2.66 0.45 12.08 0.37 10.63

SKE-PSU 0.01 3.16 0 3.36 6.52 0.03 0.65 0.02 0.29 0.12 6.76 0.11 6.48 0.21 12.66 0.19 12.09 0.2 15.62 0.19 15.59

PKE-PSU 0.01 1.16 0 1.59 2.75 4.6 2.37 4.58 1.07 4.78 2.63 4.75 1.34 4.92 3.02 4.9 1.77 4.99 4.43 4.91 3.79

214

PKE-PSU* 0.01 2.16 0 2.9 5.05 4.6 1.96 4.6 0.59 4.75 2.36 4.76 1 4.95 2.76 4.91 1.54 4.92 5.72 4.93 5.31

KRTW 0.02 17.64 0.01 122.05 139.69 0.07 12.57 0.03 3.76 0.46 26.27 0.39 20.96 0.82 40.09 0.73 36.3 0.81 163.48 0.75 161.63

GMRSS 0.02 25.95 0.02 34.11 60.06 0.11 4.79 0.04 1.95 0.64 6.61 0.48 4.25 1.11 12.67 0.92 9.78 1.04 60.75 0.94 57.5

JSZDG-R 0.01 20.75 0.01 24.74 45.49 0.07 7.5 0.02 2.25 0.3 9.29 0.2 4.45 0.44 13.78 0.4 8.58 0.47 49.41 0.42 44.58

SKE-PSU 0.01 12.61 0 13.41 26.03 0.04 2.66 0.02 1.15 0.13 8.66 0.11 7.32 0.2 15.84 0.19 14.39 0.2 31.79 0.19 30.98

PKE-PSU 0.01 4.62 0 6.37 10.99 4.62 9.75 4.59 4.39 4.82 10.21 4.76 5.22 4.9 10.94 4.91 5.83 5.01 16.38 4.92 13.61

216

PKE-PSU* 0.01 8.63 0 11.57 20.19 4.57 7.96 4.6 2.58 4.76 8.68 4.77 3.37 4.93 9.94 4.91 4.65 4.94 21.46 4.93 19.67

KRTW 0.02 69.29 0.01 562.76 632.05 0.08 63.02 0.03 17.67 0.52 85.56 0.39 45.31 0.76 111.14 0.71 113.83 0.84 660.33 0.74 664.93

GMRSS 0.02 113.7 0.02 145.11 258.81 0.13 20.74 0.03 9.8 0.58 28.62 0.55 16.63 1.09 49.68 0.93 38.82 1.03 251.84 0.97 243.63

JSZDG-R 0.01 92.67 0.01 107.89 200.56 0.07 41.15 0.03 10.71 0.25 43.17 0.21 16.84 0.42 64.06 0.4 33.8 0.53 221.27 0.39 191.2

SKE-PSU 0.01 50.34 0 53.51 103.85 0.04 10.78 0.02 4.88 0.12 17.83 0.1 12.32 0.2 28.38 0.18 22.54 0.21 98.96 0.19 95.72

PKE-PSU 0.01 18.5 0 25.45 43.95 4.6 41.5 4.59 19.82 4.79 42.37 4.75 20.97 4.92 44.8 4.91 23.38 4.92 66.68 4.9 54.39

218

PKE-PSU* 0.01 34.5 0 46.26 80.76 4.61 34.63 4.58 12.26 4.78 37.1 4.75 13.99 4.92 40.62 4.92 18.45 4.91 85.31 4.92 79.22

KRTW 0.02 300.14 0.01 2305.8 2605.95 0.11 245.37 0.04 67.97 0.52 281.96 0.38 120.35 0.82 363.95 0.74 361.12 0.84 2643.84 0.75 2638.05

GMRSS 0.02 493.2 0.02 615.9 1109.1 0.11 100.48 0.04 48.53 0.62 119.98 0.51 75.76 1.11 207.83 0.95 164.25 1.09 1074.33 0.95 1030.3

JSZDG-R 0.01 405.53 0.01 467.26 872.79 0.08 173.07 0.04 54.41 0.48 184.63 0.2 73.28 0.47 266.51 0.73 146.13 0.47 941.5 0.72 825.16

SKE-PSU 0.01 200.88 0 213.55 414.43 0.05 44.73 0.03 22.78 0.13 59.65 0.11 35.71 0.2 86.11 0.2 65.18 0.21 378.57 0.4 369.24

PKE-PSU 0.01 74 0 101.8 175.8 4.65 168.79 4.6 79.95 4.78 169.18 4.79 86.49 4.97 179.58 4.94 96.32 4.97 269.32 4.87 216.19

220

PKE-PSU* 0.01 138 0 185 323 4.64 144.24 4.58 50.56 4.75 146.41 4.74 60.5 4.9 161.26 5 76.33 4.99 345 4.9 313.37

communication: 3.7− 14.8× reduction depending on set sizes
running time: 1.2− 12× speed-up depending on network enviroments and set sizes

40 / 48

Source Code and Full Version

Thanks for Your Attention!
Any Questions?

code: http://github.com/alibaba-edu/mpc4j
eprint: https://eprint.iacr.org/2022/358

41 / 48

http://github.com/alibaba-edu/mpc4j
https://eprint.iacr.org/2022/358

Reference I

Alexander Bienstock, Sarvar Patel, Joon Young Seo, and Kevin Yeo.
Near-Optimal oblivious Key-Value stores for efficient PSI, PSU and Volume-Hiding
Multi-Maps.
In USENIX Security 2023, pages 301–318, 2023.
Justin Brickell and Vitaly Shmatikov.
Privacy-preserving graph algorithms in the semi-honest model.
In Advances in Cryptology - ASIACRYPT 2005, volume 3788 of Lecture Notes in
Computer Science, pages 236–252. Springer, 2005.
Sílvia Casacuberta, Julia Hesse, and Anja Lehmann.
Sok: Oblivious pseudorandom functions.
In 7th IEEE European Symposium on Security and Privacy, EuroS&P 2022, pages
625–646. IEEE, 2022.

42 / 48

Reference II

Alex Davidson and Carlos Cid.
An efficient toolkit for computing private set operations.
In Information Security and Privacy - 22nd Australasian Conference, ACISP 2017,
volume 10343 of Lecture Notes in Computer Science, pages 261–278. Springer,
2017.
Changyu Dong, Liqun Chen, and Zikai Wen.
When private set intersection meets big data: an efficient and scalable protocol.
In CCS 2013, pages 789–800, 2013.
Michael J. Freedman, Yuval Ishai, Benny Pinkas, and Omer Reingold.
Keyword search and oblivious pseudorandom functions.
In Theory of Cryptography, Second Theory of Cryptography Conference, TCC
2005, volume 3378 of Lecture Notes in Computer Science, pages 303–324.
Springer, 2005.

43 / 48

Reference III

Keith B. Frikken.
Privacy-preserving set union.
In Applied Cryptography and Network Security, 5th International Conference,
ACNS 2007, volume 4521 of Lecture Notes in Computer Science, pages 237–252.
Springer, 2007.
Gayathri Garimella, Payman Mohassel, Mike Rosulek, Saeed Sadeghian, and Jaspal
Singh.
Private set operations from oblivious switching.
In Public-Key Cryptography - PKC 2021, volume 12711 of Lecture Notes in
Computer Science, pages 591–617. Springer, 2021.
Gayathri Garimella, Benny Pinkas, Mike Rosulek, Ni Trieu, and Avishay Yanai.
Oblivious key-value stores and amplification for private set intersection.
In Advances in Cryptology - CRYPTO 2021, volume 12826 of Lecture Notes in
Computer Science, pages 395–425. Springer, 2021.

44 / 48

Reference IV

Kyle Hogan, Noah Luther, Nabil Schear, Emily Shen, David Stott, Sophia
Yakoubov, and Arkady Yerukhimovich.
Secure multiparty computation for cooperative cyber risk assessment.
In IEEE Cybersecurity Development, SecDev 2016, pages 75–76. IEEE Computer
Society, 2016.
Yuval Ishai, Joe Kilian, Kobbi Nissim, and Erez Petrank.
Extending oblivious transfers efficiently.
In Advances in Cryptology - CRYPTO 2003, volume 2729 of Lecture Notes in
Computer Science, pages 145–161. Springer, 2003.
Yanxue Jia, Shi-Feng Sun, Hong-Sheng Zhou, Jiajun Du, and Dawu Gu.
Shuffle-based private set union: Faster and more secure.
In USENIX 2022, 2022.

45 / 48

Reference V

Joe Kilian.
Founding cryptography on oblivious transfer.
In Proceedings of the 20th Annual ACM Symposium on Theory of Computing,
pages 20–31. ACM, 1988.
Vladimir Kolesnikov, Mike Rosulek, Ni Trieu, and Xiao Wang.
Scalable private set union from symmetric-key techniques.
In Advances in Cryptology - ASIACRYPT 2019, volume 11922 of Lecture Notes in
Computer Science, pages 636–666. Springer, 2019.
Lea Kissner and Dawn Xiaodong Song.
Privacy-preserving set operations.
In Advances in Cryptology - CRYPTO 2005, volume 3621 of Lecture Notes in
Computer Science, pages 241–257. Springer, 2005.

46 / 48

Reference VI

Arjen K. Lenstra and Tim Voss.
Information security risk assessment, aggregation, and mitigation.
In Information Security and Privacy: 9th Australasian Conference, ACISP 2004,
volume 3108 of Lecture Notes in Computer Science, pages 391–401. Springer,
2004.
Benny Pinkas, Mike Rosulek, Ni Trieu, and Avishay Yanai.
PSI from paxos: Fast, malicious private set intersection.
In Advances in Cryptology - EUROCRYPT 2020 - 39th Annual International
Conference on the Theory and Applications of Cryptographic Techniques, volume
12106 of Lecture Notes in Computer Science, pages 739–767. Springer, 2020.
Benny Pinkas, Thomas Schneider, Gil Segev, and Michael Zohner.
Phasing: Private set intersection using permutation-based hashing.
In 24th USENIX Security Symposium, USENIX Security 15, Washington, D.C.,
USA, August 12-14, 2015, pages 515–530. USENIX Association, 2015.

47 / 48

Reference VII

Michael O. Rabin.
How to exchange secrets with oblivious transfer.
2005.
http://eprint.iacr.org/2005/187.
Srinivasan Raghuraman and Peter Rindal.
Blazing fast PSI from improved OKVS and subfield VOLE.
In ACM CCS 2022, 2022.

48 / 48

http://eprint.iacr.org/2005/187

	Preliminary
	Background
	Starting Point: KRTW Protocol
	Generic Construction of PSU
	Two Instantiations of Generic Framework
	Improvement and Optimization
	Performance

