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@ all P; are semi-honest (honest but curious)
@ P; learns no more information other than his output and private input

Definition 1 (Semi-honest Security)

IT securely realizes probabilistic f in the presence of semi-honest adversaries if there
exists a PPT simulator Sim such that for all inputs z1,...,, and all i € [n]:

(Viewp, (21, ..., 2n),output(z1, ..., xy)) Res (Sim(3, 24, fi(x1,...,20)), f(21,...,20))
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@ all P; are semi-honest (honest but curious)
@ P; learns no more information other than his output and private input

Definition 1 (Semi-honest Security)

1T securely realizes deterministic f in the presence of semi-honest adversaries if there
exists a PPT simulator Sim such that for all inputs z1,...,, and all i € [n]:
Viewp, (21, . ..,%n) Res SIM(i, xi, fi(x1,. .., 2p))

4/48



Oblivious Transfer

1-out-of 2 OT [Rab05] enables the receiver learns only one messages from sender,
while sender learns nothing.
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Oblivious Transfer

1-out-of 2 OT [Rab05] enables the receiver learns only one messages from sender,
while sender learns nothing.

receiver b sender

ﬁ (’I’I’LO, ml) m
= M b

OT is complete for MPC [Kil88].

@ Private-information retrieval (PIR) is weaker than OT: it only cares privacy of
receiver

OT does not belong to Minicrypt ~ expensive public-key operations are unavoidable,
while real applications need a large number of OT

o [IKNPO3] proposed Ishai-Kilian-Nissim-Petrank OT extension: generate many OT
efficiently from O(x) number of base OT = OTe is cheap
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Private Equality Test Protocol
PEQT [PSSZ15] enables P; and P, check if their ¢-bits elements x and y are equal.
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Private Equality Test Protocol
PEQT [PSSZ15] enables P; and P, check if their ¢-bits elements x and y are equal.

Py

X
o .z y o
- 7Y Y

[PSSZ15] showed how to build PEQT by invoking 1-out-of-2 random OT /£ times

Pi(z) {yitie By(y)
~ {mi0,mi1tiep o ( ! )
@&» sample from {0,1}° vi Tl 4

, compare .
D=1z Di=1Miy;
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Oblivious Pseudorandom Functions

OPRF [FIPRO5] enables server obtain a key k and client evaluate obliviously.
PRFF:KxD—R
server

L i client
@s ha OPRF vi = Fi(2s) [
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Oblivious Pseudorandom Functions

OPRF [FIPRO5] enables server obtain a key k and client evaluate obliviously.
PRFF:KxD—R
server

L Li client
%
Qg OPRF yi = Fi(z:) (I}

R

OPREF is a powerful tool in MPC (see [CHL22] for a good survey)
@ many variants: batch/programmable/permuted/distributed OPRF
@ fast construction from OT or VOLE
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Private Set Union

sender

"N
-

{z1,. ., ZTny}

receiver

"N
4b

{ylv"'aynl}

PSU

(

In this work, we focus on the balanced setting, i.e., n1 = ns. For simplicity, we assume

n1 = n = ny hereafter.
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Applications of PSU

PSU has found numerous applications, which include but not limit to:
e information security risk assessment [LV04]
@ IP blacklist and vulnerability data aggregation [HLST16]
@ joint graph computation [BS05]
e distributed network monitoring [KS05]
@ building block for private DB supporting full join [KRTW19]
e private-ID [GMR™21]

10/48



Previous Work

According to the underlying techniques, existing PSU protocols can be divided into two
categories:
e Public-key techniques (e.g. AHE) [KS05, Fri07, DC17]
o Pros. good asympotic complexity: “almost” linear computation/communication
complexity
e Cons. poor concrete efficiency: O(\) AHE operations per set element
e Symmetric-key techniques coupled with OT [KRTW19, GMR"21, JSZ*22]
o Pros. (i) good concrete efficiency: running time is several orders of magnitude faster
than AHE-based protocols;
e Cons. poor asympotic complexity: communication/computation complexity are
superlinear

Protocols based on symmetric-key techniques are plausibly quantum secure.
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Motivation

Can we attain the-best-of-two-worlds: designing PSU protocols with optimal linear
complexity and good concrete efficiency?
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Review of KRTW (Kolesnikov-Rosulek-Trieu-Wang) Protocol

receiver . Y ={y1,...,ys} X ={z1,...,7n} sender
—— ! “»
< Y §
4 ‘] . .
server ei=1 << x, €Y RPMT ' g client
1-— €;

(wia J—)
Zj

repeat the 1-vs-many PSU n times independently

5= ZT; ei:()
vt 1 ei:1
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Zoom In of the Sub-protocol RPMT

receiver Y ={y1,...,yn} X ={z1,...,zn} sender
b ' ’ ab
F:Kx D {0,1}

indication string k r
of Y OPRF Fy()

S (i ]F2Z
P
P < Interpolate{(yi, s ® F1.(yi))icn] }
| Lagrange Interpolation|
S . c — s*
B b .| PEQT 5* « P(z) ® Fy(x)

Polynomial through any points
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Zoom In of the Sub-protocol RPMT

receiver Y ={y1,--,yn} X ={z1,..., 7} m sender
[ — . ¢ 4ab
F:KxD—{0,1}

indication string k i
of Y OPRF Fi(x)

S (i ]F2Z
P
P < Interpolate{(yi, s ® F1.(yi))icn] }
| Lagrange Interpolation|
S . c — s*
B b .| PEQT 5* « P(z) ® Fy(x)

Polynomial through any points

Usage of OPRF. Without OPRF masking, s may reveal to sender if z; € Y (by

evaluating P(z;)) ~ reveal all y; € Y .



Correctness and Security Analysis

Correctness. Consider the following two cases:
elfzeY = s " =Py) ® Fr(yi) = s® Fr(yi) ® Fr(y;) = s.

o If x ¢ Y = Fj(x) is pseudorandom. Via real-or-random argument, we conclude
that for a tuple of PPT (sender, receiver), Pr[s* = Fj(z) @ P(x) = s] < 1/2%in
computational sense.

reY <— s=3s"

Security. Follows the semi-honest security of OPRF and PEQT.
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Complexity Analysis

OPRF and PEQT are fast cryptographic protocols

The computation bottleneck lies at polynomial interpolation of arbitrary n points
e trivial algorithm using Langrange formula requires O(n?)
e fast algorithm using FFT requires O(nlog? n)

The communication bottleneck lies at the representation of degree-n polynominal

@ O(n) field elements in Fye

In sum, KRTW protocol has O(n?log? n) computation complexity and O(n?)
communication complexity?

%In [KRTW19], hash-to-bin technique was used to reduce complexity. However, Jia et al. [JSZT22]

pin-pointed that the improved protocol is not secure.
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PSU from mqRPMT

receiver sender

A <
X =Ax,...,x v
server g — (e1,...,¢€n) mgRPMT tn ) client

yields PSU coupled with OT (flipping €): receiver obtains X\Y

Y

1—61'

(a"hJ-)
z, e =0 Zq
Tl L =1
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How to Batch mgRPMT to Build Efficient mgRPMT

Root of inefficiency for KRTW protocol

© degree-n polynominal interpolation is heavy

@ have to repeat polynominal interpolation n times, while batch the basic RPMT
protocol is not trivial:
e sender learns the purported indication string s* in clear = direct reusing P let
sender be able to decide if ; € Y A x; € Y by computing and compairing s* ~»
compromise receiver's privacy
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How to Batch mgRPMT to Build Efficient mgRPMT

Root of inefficiency for KRTW protocol

© degree-n polynominal interpolation is heavy
@ have to repeat polynominal interpolation n times, while batch the basic RPMT
protocol is not trivial:
e sender learns the purported indication string s* in clear = direct reusing P let
sender be able to decide if ; € Y A x; € Y by computing and compairing s* ~»
compromise receiver's privacy

Our idea is based on two key observations.

@ 1st Observation. Polynomial interpolation plays the role of oblivious key-value
store.
@ 2nd Observation. The usage of OPRF is three-fold:
e receiver uses OPRF to derive n pseudorandom one-time pads, then encrypts the
same s* into n ciphertexts under these one-time pads.

e sender uses OPRF to decrypt a ciphertext obliviously.
o OPREF infuses polynomial interpolation with randomness to ensure the correctness.
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Oblivious Key-Value Store

dy
KxV
(xl’yl)g)
f Decode(D, x) rate n/m
A{ (wi;yi))—| Encode | dj ;D 1Lis opt{ma|
dm
Correctness. For any A= {(z1,y1),...,(zn,yn)} and any z; € {z1,...,z,}:

Pr[Decode(D, ;) = y;] > 1 — negl(\), where D <— Encode(A).
Randomness. For any A = {(z1,y1),..., (Zn,yn)} and any = & {z1,...,2,}:

Decode(D, ) ~5 Uy, where D < Encode(A).

Obliviousness. For any (29,...,29) # (z1,...,2}):

rvn rrn

Encode((29, 1), - .., (20, yn)) = Encode((z}, 1), ..., (x}, yn)), where y; < V.
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OKVS Off-the-Shelf

Table: Comparison of Different OKVS

scheme rate encoding | decoding | randomness | obliviousness
Interpolation Polynomial 1 O(nlog’n) | O(logn) X v
Garbled Bloom Filter [DCW13] | O(1/)) O(An) O\ v v
Garbled Cuckoo Table [PRTY20] 0.4 O(An) O\ v v
3H-GCT [GPR*21] 0.81 O(An) O(N) v v
RR22 [RR22] 0.81 O(An) O(\) v v
RB-OKVS [BPSY23] 0.97 O(\n) o) v v
n is # [key-value pairs]. A is the statistical security parameter (e.g. A = 40).

Drop-in replacement of polynomial interpolation with better OKVS will improve

efficiency immediately.
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How to Batch?

Rough idea to bypass the root of efficiency

@ switch the role of decryption: let receiver decrypt ciphertexts then match the
results with the indication string.

The idea is problematic since it is insecure even against a semi-honest receiver.

@ receiver records the correspondence between y; and OKVS(y;) ~ receiver learns
sender’s private input x by simple look-up when x € Y, rather than merely the
fact that z € Y.

We overcome this difficulty in two steps:

@ re-factor the functionality of OPRF to encryption and oblivious decryption
functionality.

@ merge the oblivious decryption functionality and PEQT into a new functionality
called vector oblivious decryption-then-matching (VODM) functionality.
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Encryption Scheme

SKE/PKE scheme consists of three PPT algorithms:

o KeyGen(1%): output a secret key k or a keypair (pk, sk).

e Encrypt(pk/k, m): output a ciphertext ¢ of m.

@ Decrypt(sk/k,c): decrypt c to recover m.
Single-message multi-ciphertext pseudorandomness. For any PPT A = (A;, As),
its advantage is negl(x).

k/(pk, sk) « KeyGen(1%);
(m, state) < Aj(k/pk);
Advy(k)=Pr |B=p3": B+ {0,1}; _
c;o + Encrypt(k/pk,m), ci, < C, for i € [n];
B' < As(state, {c] g}icin))
@ Single-message multi-ciphertext pseudorandomness is a mild property satisfied by

most IND-CPA secure SKE/PKE, such as PRF-based SKE, ElGamal PKE based
on DDH and Regev's PKE based on LWE.

DN |
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Vector Oblivious Decrypt-then-Match (VODM)

VODM w.r.t. encryption scheme (KeyGen, Encrypt, Decrypt) is defined as below:

receiver
-~
[ —
k/sk, m € M
e=(e1,...,ey) € {0,1}"

=4 1
10

sender

~
4a»

c=(c1,...,cn) €C"
VODM

if Decrypt(k/sk,c;) =m
if Decrypt(k/sk,c;) #m
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mgRPMT from OKVS+Encryption+VODM

receiver sender
~ -~
Y =(y1,..-,Yn) X =(x1,...,2n)
&b 4ab
k/(pk, sk) < KeyGen(1*)
R
s« M
{¢i < Encrypt(k/pk, s)}1, D < Encode({y;, ¢i}i )
k/sk, s € M

{c} < Decode(D, z;)}7 ;)
e=(e1,...,ey) € {0,1}" VODM
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Outline

© Two Instantiations of Generic Framework
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Our Focus

Choose/Design appropriate primitives to realize the framework.
@ OKVS: any off-the-shelf OKVS is fine.

@ Encryption scheme: the ones satisfy single-message multi ciphertext
pseudorandomness.

© VODM: design w.r.t. the chosen encryption scheme

We only need to foucs on step 2 and 3.
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mgRPMT from SKE and Generic 2PC

receiver sender
M Y:(yl,,yn) X:(ml’”"xn) m
b db

k <+ KeyGen(1")
s &M, {2i < Encrypt(k, s)}i,

Encode((y1,21),-- -5 (Yn,2n)) = D

{Decode(D, x;) — ¢}y

e | c—(aa)
e=(e1,...,en) €{0,1}" | GC or GMW
?

b; < Decrypt(k,c;) = s

k,se M

@ SKE: choose LowMC for small circuit size
@ generic 2PC: choose garbled circuit or GMW
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mqRPMT from Rerandomizable PKE

receiver sender
Y:(yl,...,yn) X:(xla---,.%'n) n
ab ab

(pk, sk) < KeyGen(1%)
s ¢~ M, {z + Encrypt(pk, s)}7_,

Encode((y1,21)s- -+ (Yn,2n)) = D
m; < Decrypt(sk, c}) {Decode(D, z;) = ¢i}iy
? ¢, < ReRand(pk, ¢;)

€ =8 =S8

@ re-randomizable PKE: exponential EIGamal, Regev's PKE
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mqRPMT from Rerandomizable PKE

receiver sender
Y:(yl,...,yn) X:(xla---,.’ﬂn) n
ab ab
(pk, sk) < KeyGen(1*) ReRand(pk, ¢) — ¢’
R n Decrypt(sk, ¢’) = m = Decrypt(sk, c)
s M, {Zi <~ Encrypt(pkz, S)}i:l ¢’ ~ Encrypt(pk, m)
Encode((y1,21)s- - yn,2n)) = D
m; < Decrypt(sk, c}) {Decode(D, ;) = ¢;}iy
? ¢, < ReRand(pk, ¢;)

€ =8 =S8

@ re-randomizable PKE: exponential EIGamal, Regev's PKE
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mqRPMT from Rerandomizable PKE

receiver sender

PEQ Y =(y1,.--,Yn) X = (z1,...,2n) a»

(pk, sk) < KeyGen(1%)
s ¢~ M, {z + Encrypt(pk, s)}7_,

Encode((y1,21)s- -+ (Yn,2n)) = D
m; < Decrypt(sk, c}) {Decode(D, z;) = ¢i}iy
? ¢, < ReRand(pk, ¢;)

€ =8 =S8

cg s.t. e; = 1 does not leak information since receiver knows s
c; s.t. e; = 0 does leak extra information
but such leakage is not harmful for PSU since receiver eventually learns z; ¢ Y

@ re-randomizable PKE: exponential EIGamal, Regev's PKE
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@ Improvement and Optimization
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Retrospect of the Generic Framework

Previous two mgRPMT instantiations achieve linear complexity and enjoy good
concrete efficiency.

Can we further generalize the framework?
Can we improve the efficiency of concrete instantiations?

High level idea underlying our mgRPMT design
@ receiver creates a membership relation R for hisset Y s.t. R(z) =1 <= z €Y.

@ receiver encrypts elements in Y w.r.t. R and sends the “encoding” of resulting
ciphertexts to the sender.

© sender is able to retrieve the ciphertext of his elements.
@ perform oblivious decrypt-then-match

We realize the right encryption scheme needed is membership encryption (ME).

@ ME for set X encrypts an element z into a ciphertext, which decrypts to “1" if
x € X and to “0” (intuitively).
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Membership Encryption

Definition 2 (Membership Encryption (Symmetric ME))
ME for set X consists of three PPT algorithms (with X as an implicit input):
o KeyGen(1%): outputs a key k.

@ Enc(k,z): on input a key k and an element = € X, outputs a ciphertext ¢ € C.
For uttermost generality, the behavior of Enc on x ¢ X is unspecified.

@ Dec(k,c): outputs “1” indicates c is an encryption of some z € X and “0" if not.

Correctness. Vx € X, Pr[Dec(k,c = Enc(k,z)) = 1] =1, k < KeyGen(1"7).
Consistency. Va ¢ X, Pr[Dec(k,c) = 0] > 1 — e(k): k + KeyGen(1%), ¢ & C.
Multi-element pseudorandomness. V distinct z1,...,z, € X

{Enc(k, i) }icin) = Ucn, k < KeyGen(1%)

Symmetric ME naturally extends to the public-key setting:

e KeyGen outputs (pk, sk), in which pk is used to encrypt and sk is used to decrypt.
33/48



Generic Construction of ME

The essence of ME is to encrypt element’'s membership relation, rather than the
element itself.
@ Membership relation can be created by designing a mapping H from elements to
X. Basically, there are two extreme cases of mapping.

o lossy mapping: select a single indication string s as the characteristic of X, then
map all elements to s, i.e., H:x; — s.

e injective mapping: select n indication strings s; as the characteristic of X, then map
elements to distinct indication strings, i.e., H: x; — s;.

We then present various constructions of ME by mixing encryption schemes and
membership mapping.
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ME from Probabilistic Encryption and Lossy Mapping

ME from probabilistic SKE and lossy mapping.
o KeyGen(1%): runs SKE.KeyGen(1%) — kg, picks s < M, sets H: X — s,
outputs k = (keke, H).
@ Enc(k,z): parses k = (kske, H), outputs ¢ <— SKE.Enc(kske, H(z)).
e Dec(k,c): parses k = (kske, H), outputs ‘1" iff SKE.Dec(kske, ¢) = s.

ME from probabilistic PKE and lossy mapping.
o KeyGen(1%): runs PKE.KeyGen(1") — (pkpke, Skske), picks s & M, sets
H: X — s, outputs pk = pkpke and sk = (skpke, H).
o Enc(pk,z): parses pk = pkpye, outputs ¢ < PKE.Enc(pkpke, H(2)).
@ Dec(sk,c): parses sk = (skpke, H), outputs ‘1" iff PKE.Dec(skpke, ¢) = s.

Lemma. If SKE/PKE satisfies single-message multi-ciphertext pseudorandomness, then
the ME construction satisfies multi-element pseudorandomness with consistency error
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Discussion

The above ME constructions are exactly the backbones of two instantiations of
mgqRPMT.

ME requires multi-element pseudorandomness

@ the use of lossy mapping inherently stipulates that the accompanying encryption
schemes must be probabilistic to satisfy single-message multi-ciphertext
pseudorandomness
~» ciphertext expansion is unavoidable
= the size of OKVS increases

Observation: if adopting injective mapping, then ME can be built from determin-
istic encryption schemes satisfying multi-message multi-ciphertext pseudorandom-
ness.
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ME from Deterministic Encryption and Injective Mapping

ME from deterministic SKE and injective mapping.
o KeyGen(1%): picks kske &K, picks s & M, setsH:x; — i, outputs
sk = (k'skea H)
e Enc(k,z): outputs ¢ < SKE.Enc(kske, H()).
e Dec(sk,c): outputs ‘1" iff SKE.Dec(kgke, ¢) € [n], where n = | X]|.

Lemma: If SKE/PKE satisfies multi-message multi-ciphertext pseudorandomness, then
the ME construction satisfies multi-element pseudorandomness with consistency error

o SKE candidate: PRP-based construction such as AES ~» compact ciphertext
e PKE candidate: unclear for the time being (deterministic PKE?)
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Vector Oblivious Decrypt

Since the decryption result of ME is only 1-bit to indicate membership, thus the
accompanying VODM can be simplified to VOD.

receiver sender

" -
v

ﬁ c:(cla---vcn)ecn
RES

b; = Decrypt(k/sk, c;)

k/sk, m € M
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Performance

Comm. (MB) Running time (s)
R S LAN 1Gbps 100Mbps 10Mbps
total T=1 T=8 T=1 T=8 T=1 T=8 T=1 T=8
setup | online | setup [ online [ setup [ online [ setup [ online | setup | online | setup | online | setup [ online | setup [ online

Protocol

setup | online | setup | online

914

KRTW 0.02 417 0.01 | 29.63 33.8 0.07 3.5 0.03 1.07 | 049 | 16.13 | 0.37 | 14.06 | 0.83 | 27.36 | 0.72 | 24.66 | 0.81 55.9 0.73 55.32
GMRSS 0.02 5.89 0.02 7.96 13.85 0.1 1.01 0.04 | 0.42 | 0.66 h 0.46 1.28 1 3.53 0.91 2.97 1.06 14.44 0.93 13.97
JSZDG-R | 0.01 4.65 0.01 5.63 10.28 0.07 1.81 0.02 | 052 | 0.27 2.65 0.23 1.34 0.49 4.19 0.41 2.66 0.45 12.08 0.37 10.63
SKE-PSU | 0.01 3.16 0 3.36 6.52 0.03 0.12 6.76 0.11 6.48 0.21 | 12.66 | 0.19 | 12.09 0.2 15.62 0.19 15.59
4.78 2.63 475 1.34 3.02 177
PKE-PSU* | 0.01 2.16 0 2.9 5.05 4.6 1.96 4.6 0.59 | 4.75 2.36 4.76

916

KRTW 0.02 | 17.64 | 0.01 | 122.05| 139.69 | 0.07 | 12,57 | 0.03 | 3.76 | 0.46 | 26.27 | 0.39 | 20.96 | 0.82 | 40.09 | 0.73 36.3 0.81 | 163.48 | 0.75 | 161.63
GMRSS 0.02 | 25.95 | 0.02 | 34.11 60.06 0.11 4.79 0.04 1.95 | 0.64 - 0.48 4.25 111 | 12.67 | 0.92 9.78 1.04 60.75 0.94 57.5
JSZDG-R | 0.01 | 20.75 | 0.01 | 24.74 45.49 0.07 7.5 0.02 | 2.25 0.3 9.29 0.2 4.45 0.44 | 13.78 0.4 8.58 0.47 49.41 0.42 44.58
SKE-PSU | 0.01 | 12.61 0 13.41 26.03 0.04 0.13 8.66. 0.11 7.32 0.2 15.84 | 0.19 | 14.39 0.2 31.79 0.19 30.98
4.82 | 1021 | 4.76
2.58 | 4.76 8.68 4.77 21.46 19.67

PKE-PSU* | 0.01 8.63 0 11.57 20.19 4.57

17.67 | 0.52 | 85.56 | 0.39 | 45.31 | 0.76 | 111.14 | 0.71 | 113.83 | 0.84 | 660.33 | 0.74 | 664.93
9.8 0.58 | 28.62 | 0.55 | 16.63 | 1.09 | 49.68 | 0.93 | 38.82 | 1.03 | 251.84 | 0.97 | 243.63
0.4 33.8 0.53 | 221.27 | 0.39 191.2
0.18 | 22.54 | 0.21 98.96 0.19 95.72

KRTW 0.02 | 69.29 | 0.01 | 562.76 | 632.05 | 0.08
GMRSS 0.02 | 113.7 | 0.02 | 145.11 | 258.81 | 0.13
JSZDG-R | 0.01 | 92.67 | 0.01 | 107.89 | 200.56 | 0.07
SKE-PSU | 0.01 | 50.34 0 53.51 103.85 | 0.04

42.37 44.8
37.1 4.75 | 13.99 | 4.92 | 40.62 | 4.92 85.31 79.22

PKE-PSU* | 0.01 34.5 0 46.26 80.76 4.61 | 34.63 | 4.58 | 12.26

281.96 | 0.38 | 120.35 | 0.82 | 363.95 | 0.74 | 361.12 | 0.84 | 2643.84 | 0.75 | 2638.05
119.98 | 0.51 | 75.76 | 1.11 | 207.83 | 0.95 | 164.25 | 1.09 | 1074.33 | 0.95 | 1030.3
184.63 266.51 146.13 | 0.47 941.5 0.72 | 825.16
378.57 369.24

KRTW 0.02 | 300.14 | 0.01 | 2305.8 | 2605.95 | 0.11 | 245.37 | 0.04 | 67.97
GMRSS 0.02 | 493.2 | 0.02 | 6159 | 1109.1 | 0.11 | 100.48 | 0.04 | 48.53
JSZDG-R | 0.01 | 405.53 | 0.01 | 467.26 | 872.79 | 0.08 | 173.07
200.88 213.55 | 414.43

464 | 14424 | 4.58 [ 50.56 | 4.75 | 146.41 | 4:74 [ 605 | 49 16126 5 [ 76.33 [ 4.99

PKE-PSU*

@ communication: 3.7 — 14.8x reduction depending on set sizes
@ running time: 1.2 — 12X speed-up depending on network enviroments and set sizes
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Source Code and Full Version

Thanks for Your Attention!

Any Questions?

ARTIFACT ARTIFACT ARTIFACT
EVALUATED EVALUATED EVALUATED
susenix usenix usenix

sssssssssssssssssssssssssssssss

AVAILABLE REPRODUCED

code: http://github.com/alibaba-edu/mpc4j
eprint: https://eprint.iacr.org/2022/358
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