
Design and Analysis of Algorithms
Application of Greedy Algorithms (II)

1 Huffman Coding

2 Single Source Shortest Path Problem
Dijkstra’s Algorithm

3 Minimal Spanning Tree
Kruskal’s Algorithm
Prim’s Algorithm

1 / 88

Applications of Greedy Algorithms

Huffman coding
Proof of Huffman algorithm

Single source shortest path algorithm
Dijkstra algorithm and correctness proof

Minimal spanning trees
Prim’s algorithm
Kruskal’s algorithm

2 / 88

Outline

1 Huffman Coding

2 Single Source Shortest Path Problem
Dijkstra’s Algorithm

3 Minimal Spanning Tree
Kruskal’s Algorithm
Prim’s Algorithm

3 / 88

Motivation of Coding

Let Γ be an alphabet of n symbols, the frequency of symbol i is fi.
Clearly,

∑n
i=1 fi = 1.

In practice, to facilitate transmission in the digital world (improve
efficiency and robustness), we use coding to encode symbols
(characters in a file) into codewords, then transmit.

Γ C C Γ
encoding transmit decoding

What is a good coding scheme?

efficiency: efficient encoding/decoding & low bandwidth
other nice properties about robustness, e.g., error-correcting

4 / 88

Fix-Length vs. Variable-Length Coding

Two approaches of encoding a source (Γ, F)

Fix-length: the length of each codeword is a fixed number
Variable-length: the length of each codeword could be
different

Fix-length coding seems neat. Why bother to introduce
variable-length coding?

If each symbol appears with same frequency, then fix-length
coding is good.
If (Γ, F) is non-uniform, we can use less bits to represent
more frequent symbols ⇒ more economical coding ⇒ low
bandwidth

5 / 88

Fix-Length vs. Variable-Length Coding

Two approaches of encoding a source (Γ, F)

Fix-length: the length of each codeword is a fixed number
Variable-length: the length of each codeword could be
different

Fix-length coding seems neat. Why bother to introduce
variable-length coding?

If each symbol appears with same frequency, then fix-length
coding is good.
If (Γ, F) is non-uniform, we can use less bits to represent
more frequent symbols ⇒ more economical coding ⇒ low
bandwidth

5 / 88

Fix-Length vs. Variable-Length Coding

Two approaches of encoding a source (Γ, F)

Fix-length: the length of each codeword is a fixed number
Variable-length: the length of each codeword could be
different

Fix-length coding seems neat. Why bother to introduce
variable-length coding?

If each symbol appears with same frequency, then fix-length
coding is good.
If (Γ, F) is non-uniform, we can use less bits to represent
more frequent symbols ⇒ more economical coding ⇒ low
bandwidth

5 / 88

Average Codeword Length

Let fi be the frequency of i-th symbol, ℓi be its codeword length.
Average code length capture the average length of codeword for
source (Γ, F)

L =

n∑
i=1

fiℓi

Problem. Given a source (Γ, F), finding its optimal encoding
(minimize average codeword length).

Wait... There is still a subtle problem here.

6 / 88

Average Codeword Length

Let fi be the frequency of i-th symbol, ℓi be its codeword length.
Average code length capture the average length of codeword for
source (Γ, F)

L =

n∑
i=1

fiℓi

Problem. Given a source (Γ, F), finding its optimal encoding
(minimize average codeword length).

Wait... There is still a subtle problem here.

6 / 88

Prefix-free Coding

Prefix-free. No codeword cannot be a prefix of another codeword.

prefix code (前缀码) ; prefix-free code

All fixed-length encodings naturally satisfy prefix-free property.
Prefix-free property is only meaningful for variable-length
encoding.

Application of prefix-free encoding (consider the case of binary
encoding)

Not prefix-free: the coding may not be uniquely decipherable.
Out-of-band channel is needed to transmit delimiter.
Prefix-free: unique decipherable, decoding does not require
out-of-band transmit

7 / 88

Prefix-free Coding

Prefix-free. No codeword cannot be a prefix of another codeword.

prefix code (前缀码) ; prefix-free code

All fixed-length encodings naturally satisfy prefix-free property.
Prefix-free property is only meaningful for variable-length
encoding.

Application of prefix-free encoding (consider the case of binary
encoding)

Not prefix-free: the coding may not be uniquely decipherable.
Out-of-band channel is needed to transmit delimiter.
Prefix-free: unique decipherable, decoding does not require
out-of-band transmit

7 / 88

Prefix-free Coding

Prefix-free. No codeword cannot be a prefix of another codeword.

prefix code (前缀码) ; prefix-free code

All fixed-length encodings naturally satisfy prefix-free property.
Prefix-free property is only meaningful for variable-length
encoding.

Application of prefix-free encoding (consider the case of binary
encoding)

Not prefix-free: the coding may not be uniquely decipherable.
Out-of-band channel is needed to transmit delimiter.
Prefix-free: unique decipherable, decoding does not require
out-of-band transmit

7 / 88

Ambiguity of Non-Prefix-Free Encoding

Example. Non prefix-free encoding
⟨a, 001⟩, ⟨b, 00⟩, ⟨c, 010⟩, ⟨d, 01⟩

Decoding of string like 0100001 is ambiguous
decoding 1: 01 | 00 | 001⇒ (d, b, a)

decoding 2: 010 | 00 | 01⇒ (c, b, d)

Refinement of Problem
How to find an optimal prefix-free encoding?

8 / 88

Ambiguity of Non-Prefix-Free Encoding

Example. Non prefix-free encoding
⟨a, 001⟩, ⟨b, 00⟩, ⟨c, 010⟩, ⟨d, 01⟩

Decoding of string like 0100001 is ambiguous
decoding 1: 01 | 00 | 001⇒ (d, b, a)

decoding 2: 010 | 00 | 01⇒ (c, b, d)

Refinement of Problem
How to find an optimal prefix-free encoding?

8 / 88

Tree Representation of Prefix-free Encoding

Any prefix-free encoding can be represented by a binary tree.
all symbols are at the leaves

this property implies prefix-freeness, since no leaf node could
be a prefix of other leaf nodes

each codeword is generated by a path from root to leaf,
interpreting “left” as 0 and “right” as 1

codeword length ℓi for symbol i ← depth di of leaf node i in
the tree

Bonus: Decoding is unique
A string of bits is decoded by starting at the root, reading the
string from left to right to move downward along the tree.
Whenever a leaf is reached, outputting the corresponding
symbol and returning to the root.

9 / 88

Tree Representation of Prefix-free Encoding

Any prefix-free encoding can be represented by a binary tree.
all symbols are at the leaves

this property implies prefix-freeness, since no leaf node could
be a prefix of other leaf nodes

each codeword is generated by a path from root to leaf,
interpreting “left” as 0 and “right” as 1

codeword length ℓi for symbol i ← depth di of leaf node i in
the tree

Bonus: Decoding is unique
A string of bits is decoded by starting at the root, reading the
string from left to right to move downward along the tree.
Whenever a leaf is reached, outputting the corresponding
symbol and returning to the root.

9 / 88

Simple Fact

An optimal prefix-free encoding corresponds to a full binary
tree

every node has either zero or two children
except leaves, each internal node have two children

Proof. If not, there must be a local structure as shown in right
picture, we can remove the node with only one child.

· · · · · ·

⇒

10 / 88

Simple Fact

An optimal prefix-free encoding corresponds to a full binary
tree

every node has either zero or two children
except leaves, each internal node have two children

Proof. If not, there must be a local structure as shown in right
picture, we can remove the node with only one child.

· · · · · ·

⇒

10 / 88

An Example of Tree Representation (1/2)
Example. ⟨a, 0.6⟩, ⟨b, 0.05⟩, ⟨c, 0.1⟩, ⟨d, 0.25⟩

a

0.6 0.4

0.15

d

0.25
b

0.1

c

0.05

(0.05 + 0.1)× 3 + 0.25× 2 + 0.6× 1

= 1.55

cost of tree : L(T)

depth of i-th symbol in the tree : di

L(T) =

n∑
i

fi · di =
n∑
i

fi · ℓi = L(Γ)

11 / 88

An Example of Tree Representation (2/2)

a

0.6 0.4

0.15

d

0.25
b

0.05

c

0.1

(0.05 + 0.1) + 0.15 + 0.25 + 0.4 + 0.6

= 1.55

Define frequency of internal node to the sum of its two children
The cost of a tree is the sum of the frequencies of all leaves and
internal nodes, except the root.

for full binary tree with n > 1 leaves, there are one root node,
n− 2 internal nodes

Another way to write the cost function:

L(T) =
2n−2∑

i

fi
12 / 88

Greedy Algorithm
Constructing the full binary tree in a greedy manner:

1 find the two symbols with the smallest frequencies, say 1 and 2
2 make them children of a new node, which then has frequency

fi + fj
3 pull f1 and f2 off the list of frequencies, insert (f1 + f2), then

iterate to repeat the above steps.

f5 f4

f1 + f2

f3

f1 f2

13 / 88

Huffman Coding

[David A. Huffman, 1952] A Method for the Construction of
Minimum-Redundancy Codes.

Huffman code is a particular type of optimal prefix code that
is commonly used for lossless data compression.

Huffman’s method can be efficiently implemented, finding a code
in time linear to the number of input weights if these weights are
sorted.

Shannon’s source coding theorem
the entropy is a measure of the smallest codeword length
that is theoretically possible

H̃(Γ) =
n∑

i=1

pi log 1

pi

Huffman coding is very close to the theoretical limit established by
Shannon.

14 / 88

Huffman Coding

[David A. Huffman, 1952] A Method for the Construction of
Minimum-Redundancy Codes.

Huffman code is a particular type of optimal prefix code that
is commonly used for lossless data compression.

Huffman’s method can be efficiently implemented, finding a code
in time linear to the number of input weights if these weights are
sorted.

Shannon’s source coding theorem
the entropy is a measure of the smallest codeword length
that is theoretically possible

H̃(Γ) =
n∑

i=1

pi log 1

pi

Huffman coding is very close to the theoretical limit established by
Shannon.

14 / 88

Huffman Coding

[David A. Huffman, 1952] A Method for the Construction of
Minimum-Redundancy Codes.

Huffman code is a particular type of optimal prefix code that
is commonly used for lossless data compression.

Huffman’s method can be efficiently implemented, finding a code
in time linear to the number of input weights if these weights are
sorted.

Shannon’s source coding theorem
the entropy is a measure of the smallest codeword length
that is theoretically possible

H̃(Γ) =

n∑
i=1

pi log 1

pi

Huffman coding is very close to the theoretical limit established by
Shannon.

14 / 88

Huffman Coding

[David A. Huffman, 1952] A Method for the Construction of
Minimum-Redundancy Codes.

Huffman code is a particular type of optimal prefix code that
is commonly used for lossless data compression.

Huffman’s method can be efficiently implemented, finding a code
in time linear to the number of input weights if these weights are
sorted.

Shannon’s source coding theorem
the entropy is a measure of the smallest codeword length
that is theoretically possible

H̃(Γ) =

n∑
i=1

pi log 1

pi

Huffman coding is very close to the theoretical limit established by
Shannon.

14 / 88

History of Huffman Coding

Huffman coding remains in wide use because of its simplicity, high
speed, and lack of patent coverage.

often used as a “back-end” to other compression methods.
DEFLATE (PKZIP’s algorithm) and multimedia codes such as
JPEG and MP3 have a front-end model and quantization
followed by the use of prefix codes

In 1951, David A. Huffman and his MIT information theory classmates
were given the choice of a term paper or a final exam. The professor,
Robert M. Fano, assigned a term paper on the problem of finding the
most efficient binary code. Huffman, unable to prove any codes were the
most efficient, was about to give up and start studying for the final when
he hit upon the idea of using a frequency-sorted binary tree and quickly
proved this method the most efficient.
In doing so, Huffman outdid Fano, who had worked with information
theory inventor Claude Shannon to develop a similar code. Building the
tree from the bottom up guaranteed optimality, unlike top-down Shannon-
Fano coding.

15 / 88

History of Huffman Coding

Huffman coding remains in wide use because of its simplicity, high
speed, and lack of patent coverage.

often used as a “back-end” to other compression methods.
DEFLATE (PKZIP’s algorithm) and multimedia codes such as
JPEG and MP3 have a front-end model and quantization
followed by the use of prefix codes

In 1951, David A. Huffman and his MIT information theory classmates
were given the choice of a term paper or a final exam. The professor,
Robert M. Fano, assigned a term paper on the problem of finding the
most efficient binary code. Huffman, unable to prove any codes were the
most efficient, was about to give up and start studying for the final when
he hit upon the idea of using a frequency-sorted binary tree and quickly
proved this method the most efficient.
In doing so, Huffman outdid Fano, who had worked with information
theory inventor Claude Shannon to develop a similar code. Building the
tree from the bottom up guaranteed optimality, unlike top-down Shannon-
Fano coding.

15 / 88

Pseudocode of Huffman Coding

Algorithm 1: HuffmanEncoding(S = {xi}, 0 ≤ f(xi) ≤ 1)

Output: An encoding tree with n leaves
1: let Q be a priority queue of integers (symbol index), ordered

by frequency;
2: for i = 1 to n do insert(Q, i);
3: for k = n+ 1 to 2n− 1 do
4: i = deletemin(Q), j = deletemin(Q);
5: create a node numbered k with children i, j;
6: f(k)← f(i) + f(j) //i is left child, j is right child;
7: record tuple (i, j, k);
8: insert(Q, k);
9: end

After each operation, the length of queue decreases by 1.
When there is only one element left, the construction of
Huffman tree finishes.

16 / 88

Demo of Huffman Encoding

Input: ⟨a, 0.45⟩, ⟨b, 0.13⟩, ⟨c, 0.12⟩, ⟨d, 0.16⟩, ⟨e, 0.09⟩, ⟨f, 0.05⟩

f

5

e

9

d

16

c

12

b

13

a

45

14

2530

55

100

Encoding: ⟨f, 0000⟩, ⟨e, 0001⟩, ⟨d, 001⟩, ⟨c, 010⟩, ⟨b, 011⟩, ⟨a, 1⟩
Average code length:
4× (0.05 + 0.09) + 3× (0.16 + 0.12 + 0.13) + 1× 0.45 = 2.24

17 / 88

Demo of Huffman Encoding

Input: ⟨a, 0.45⟩, ⟨b, 0.13⟩, ⟨c, 0.12⟩, ⟨d, 0.16⟩, ⟨e, 0.09⟩, ⟨f, 0.05⟩

f

5

e

9

d

16

c

12

b

13

a

45

14

2530

55

100

Encoding: ⟨f, 0000⟩, ⟨e, 0001⟩, ⟨d, 001⟩, ⟨c, 010⟩, ⟨b, 011⟩, ⟨a, 1⟩
Average code length:
4× (0.05 + 0.09) + 3× (0.16 + 0.12 + 0.13) + 1× 0.45 = 2.24

17 / 88

Demo of Huffman Encoding

Input: ⟨a, 0.45⟩, ⟨b, 0.13⟩, ⟨c, 0.12⟩, ⟨d, 0.16⟩, ⟨e, 0.09⟩, ⟨f, 0.05⟩

f

5

e

9

d

16

c

12

b

13

a

45

14

25

30

55

100

Encoding: ⟨f, 0000⟩, ⟨e, 0001⟩, ⟨d, 001⟩, ⟨c, 010⟩, ⟨b, 011⟩, ⟨a, 1⟩
Average code length:
4× (0.05 + 0.09) + 3× (0.16 + 0.12 + 0.13) + 1× 0.45 = 2.24

17 / 88

Demo of Huffman Encoding

Input: ⟨a, 0.45⟩, ⟨b, 0.13⟩, ⟨c, 0.12⟩, ⟨d, 0.16⟩, ⟨e, 0.09⟩, ⟨f, 0.05⟩

f

5

e

9

d

16

c

12

b

13

a

45

14

2530

55

100

Encoding: ⟨f, 0000⟩, ⟨e, 0001⟩, ⟨d, 001⟩, ⟨c, 010⟩, ⟨b, 011⟩, ⟨a, 1⟩
Average code length:
4× (0.05 + 0.09) + 3× (0.16 + 0.12 + 0.13) + 1× 0.45 = 2.24

17 / 88

Demo of Huffman Encoding

Input: ⟨a, 0.45⟩, ⟨b, 0.13⟩, ⟨c, 0.12⟩, ⟨d, 0.16⟩, ⟨e, 0.09⟩, ⟨f, 0.05⟩

f

5

e

9

d

16

c

12

b

13

a

45

14

2530

55

100

Encoding: ⟨f, 0000⟩, ⟨e, 0001⟩, ⟨d, 001⟩, ⟨c, 010⟩, ⟨b, 011⟩, ⟨a, 1⟩
Average code length:
4× (0.05 + 0.09) + 3× (0.16 + 0.12 + 0.13) + 1× 0.45 = 2.24

17 / 88

Demo of Huffman Encoding

Input: ⟨a, 0.45⟩, ⟨b, 0.13⟩, ⟨c, 0.12⟩, ⟨d, 0.16⟩, ⟨e, 0.09⟩, ⟨f, 0.05⟩

f

5

e

9

d

16

c

12

b

13

a

45

14

2530

55

100

Encoding: ⟨f, 0000⟩, ⟨e, 0001⟩, ⟨d, 001⟩, ⟨c, 010⟩, ⟨b, 011⟩, ⟨a, 1⟩
Average code length:
4× (0.05 + 0.09) + 3× (0.16 + 0.12 + 0.13) + 1× 0.45 = 2.24

17 / 88

Demo of Huffman Encoding

Input: ⟨a, 0.45⟩, ⟨b, 0.13⟩, ⟨c, 0.12⟩, ⟨d, 0.16⟩, ⟨e, 0.09⟩, ⟨f, 0.05⟩

f

5

e

9

d

16

c

12

b

13

a

45

14

2530

55

100

Encoding: ⟨f, 0000⟩, ⟨e, 0001⟩, ⟨d, 001⟩, ⟨c, 010⟩, ⟨b, 011⟩, ⟨a, 1⟩
Average code length:
4× (0.05 + 0.09) + 3× (0.16 + 0.12 + 0.13) + 1× 0.45 = 2.24

17 / 88

Property of Optimal Prefix-free Encoding: Lemma 1

Lemma 1. Let x and y be two symbols in Γ with smallest
frequencies, then there must exist an optimal full binary tree that
x and y are sibling leaf nodes in the deepest level.

Proof sketch
Breaking the lemma into cases depending on |Γ|.
By the correspondence between encoding scheme and tree,
just need to prove the tree T stated by lemma is optimal than
trees T ′ of other forms.

Case |Γ| = 1, the lemma obviously holds. Only one possibility: one
root node.
Case |Γ| = 2, the lemma obviously holds. Only one possibility:
one-level full binary tree with two leaves.

18 / 88

Property of Optimal Prefix-free Encoding: Lemma 1

Lemma 1. Let x and y be two symbols in Γ with smallest
frequencies, then there must exist an optimal full binary tree that
x and y are sibling leaf nodes in the deepest level.

Proof sketch
Breaking the lemma into cases depending on |Γ|.
By the correspondence between encoding scheme and tree,
just need to prove the tree T stated by lemma is optimal than
trees T ′ of other forms.

Case |Γ| = 1, the lemma obviously holds. Only one possibility: one
root node.
Case |Γ| = 2, the lemma obviously holds. Only one possibility:
one-level full binary tree with two leaves.

18 / 88

Property of Optimal Prefix-free Encoding: Lemma 1

Lemma 1. Let x and y be two symbols in Γ with smallest
frequencies, then there must exist an optimal full binary tree that
x and y are sibling leaf nodes in the deepest level.

Proof sketch
Breaking the lemma into cases depending on |Γ|.
By the correspondence between encoding scheme and tree,
just need to prove the tree T stated by lemma is optimal than
trees T ′ of other forms.

Case |Γ| = 1, the lemma obviously holds. Only one possibility: one
root node.
Case |Γ| = 2, the lemma obviously holds. Only one possibility:
one-level full binary tree with two leaves.

18 / 88

Proof of Lemma 1 (continue)

Case |Γ| = 3, two possibilities T and T ′

T : both x, y are sibling leaves in the second level (by
algorithm)
T ′: only one of x and y is leaf node in the second level

a

x y

x

a y

T T ′

L(T ′)− L(T) = fa × 2 + fx − (fx × 2 + fa) = fa − fx ≥ 0

⇒ T is optimal

19 / 88

Proof of Lemma 1 (continue)

Case |Γ| = 3, two possibilities T and T ′

T : both x, y are sibling leaves in the second level (by
algorithm)
T ′: only one of x and y is leaf node in the second level

a

x y

x

a y

T T ′

L(T ′)− L(T) = fa × 2 + fx − (fx × 2 + fa) = fa − fx ≥ 0

⇒ T is optimal

19 / 88

Proof of Lemma 1 (continue)

Case |Γ| = 3, two possibilities T and T ′

T : both x, y are sibling leaves in the second level (by
algorithm)
T ′: only one of x and y is leaf node in the second level

a

x y

x

a y

T T ′

L(T ′)− L(T) = fa × 2 + fx − (fx × 2 + fa) = fa − fx ≥ 0

⇒ T is optimal

19 / 88

Proof of Lemma 1 (continue)

Case |Γ| ≥ 4, consider the following possible sub-cases:
both x and y are not sibling leaf nodes in the deepest level:
use (x, y) to replace sibling leaf nodes (a, b) in the deepest
level (such (a, b) must exist) to obtain T

L(T ′)− L(T) =

=fada + fbdb + fxdx + fydy − (fxda + fydb + fadx + fbdy)

=(da − dx)(fa − fx) + (db − dy)(fb − fy) ≥ 0

x and y are in the deepest level but not sibling nodes: simple
swap to obtain T ′:

L(T) = L(T ′)

only one of x and y in the deepest level, w.l.o.g. assume x is
in the deepest level and its sibling is a, swap y and a to
obtain T . Similar to |Γ| = 3, we have:

L(T ′)− L(T) ≥ 0

20 / 88

Properties of Optimal Prefix-free Encoding: Lemma 2

Lemma 2. Let T be the prefix-free encoding binary tree for (Γ, F),
x and y be two sibling leaf nodes and z be their parent node.
Let T ′ be the tree for Γ′ = (Γ− {x, y}) ∪ {z} derived from T ,
where f ′

c = fc for all c ̸= Γ− {x, y}, fz = fx + fy. Then:

T ′ is a full binary tree
L(T) = L(T ′) + fx + fy

x y

T

z

T ′

21 / 88

Proof of Lemma 2

∀c ∈ Γ− {x, y}, we have dc = d′c ⇒
fcdc = fcd

′
c

dx = dy = d′z + 1
Γ− {x, y} = Γ′ − {z}

L(T) =
∑
c∈Γ

fcdc =

 ∑
c∈Γ−{x,y}

fcdc

+ (fxdx + fydy)

=

 ∑
c∈Γ′−{z}

fcd
′
c

+ fzd
′
z + (fx + fy)

=L(T ′) + fx + fy

22 / 88

Correctness Proof of Huffman Encoding

Theorem. Huffman algorithm yields optimal prefix-free encoding
binary tree for all |Γ| ≥ 2.

Proof. Mathematic induction

Induction basis. For |Γ| = 2, Huffman algorithm yields optimal
prefix-free encoding.

Induction step. Assume Huffman algorithm encoding yields optimal
prefix-free encoding for size k, then it also yields optimal prefix-free
encoding for size k + 1.

23 / 88

Induction Basis

k = 2, Γ = {x1, x2}
Any codeword at least require at least one bit. Huffman algorithm
yields code word 0 and 1, which is optimal prefix-free encoding.

x1 x2

0 1

24 / 88

Induction Step (1/3)

Assume Huffman algorithm yields optimal prefix-free encoding for
input size k. Now, consider input size k + 1, a.k.a. |Γ| = k + 1

Γ = {x1, x2, . . . , xk+1}

Let Γ′ = (Γ− {x1, x2}) ∪ {z}, fz = fx1 + fx2

Induction premise ⇒ Huffman algorithm generates an optimal
prefix-free encoding tree T ′ for Γ′, where frequencies are fz and
fxi (i = 3, 4, . . . , k + 1).

25 / 88

Induction Step (2/3)

Claim. Append (x1, x2) as z’s children to T ′, obtaining T (greedy
algorithm’s output), which is an optimal prefix-free encoding tree
for Γ = (Γ′ − {z}) ∪ {x1, x2}.

z

T ′ for Γ′

x1 x2

T for Γ⇐

x1 x2

T ∗ for Γ⇐

z

T ∗′ for Γ′

26 / 88

Induction Step (3/3)

Proof. If not, then there exists an optimal prefix-encoding free tree
T ∗, L(T ∗) < L(T).

Lemma 1 ⇒ x1 and x2 must be the sibling leaves in the
deepest level

Idea. Reduce to the optimality of T ′ for Γ′

Remove x and y from T ∗, obtaining a new encoding tree T ∗′ for
Γ′. Lemma 2 ⇒

L(T ∗′) =L(T ∗)− (fx1 + fx2)

<L(T)− (fx1 + fx2)

=L(T ′)

This contradicts to the premise that T ′ is an optimal prefix-free
encoding tree for Γ′.

27 / 88

Application: Files Merge

Problem. Given a collection of files Γ = {1, . . . , n}, In each file,
the items have been sorted, fi denotes the number of items in file
i. Now, the task is using 2-way merging sort to merge these files
into a single files whose items are sorted.

Represent the merging the process as a bottom-up binary tree.
leaf nodes: files labeled with {1, . . . , n}
parent node of i and j: value is fi + fj (number of items after
merging)

28 / 88

Demo of 2-ary Sequential Merge

Example. Γ = {21, 10, 32, 41, 18, 70}

21 10 32 41

18 70

31 73

88104

192

29 / 88

Demo of 2-ary Sequential Merge

Example. Γ = {21, 10, 32, 41, 18, 70}

21 10 32 41

18 7031

73

88104

192

29 / 88

Demo of 2-ary Sequential Merge

Example. Γ = {21, 10, 32, 41, 18, 70}

21 10 32 41

18 7031 73

88104

192

29 / 88

Demo of 2-ary Sequential Merge

Example. Γ = {21, 10, 32, 41, 18, 70}

21 10 32 41

18 7031 73

88

104

192

29 / 88

Demo of 2-ary Sequential Merge

Example. Γ = {21, 10, 32, 41, 18, 70}

21 10 32 41

18 7031 73

88104

192

29 / 88

Demo of 2-ary Sequential Merge

Example. Γ = {21, 10, 32, 41, 18, 70}

21 10 32 41

18 7031 73

88104

192

29 / 88

Complexity of 2-way Merge (1/2)

Worst-case complexity of merging ordered A[k] and B[l] into
ordered C[k + l]

same to merge operation in MergeSort
W (k, l) ≤ k + l − 1

21 10 32 41

18 7031 73

88104

192

Bottom-up calculation of worst merging complexity:

(21 + 10− 1) + (32 + 41− 1) + (18 + 70− 1)

+(31 + 73− 1) + (104 + 88− 1) = 483

30 / 88

Complexity of 2-way Merge (2/2)

Calculation from n leaf nodes
(21 + 10 + 32 + 41)× 3 + (18 + 70)× 2− 5 = 483

Worst-case complexity

W (n) =

(
n∑

i=1

fidi

)
− (n− 1)

How to prove the correctness of formula?
The tree is generated in bottom-up manner, and must be a
full binary tree. Each non-leaf node corresponds to a merge
operation, contribution to W (n) is −1.
The number of internal nodes = m. Except leaf nodes, for all
internal nodes: in-degree = 1, out-degree = 2.∑
out-degree = 2m,

∑
in-degree = n+ (m− 1)⇒ m = n− 1

31 / 88

Complexity of 2-way Merge (2/2)

Calculation from n leaf nodes
(21 + 10 + 32 + 41)× 3 + (18 + 70)× 2− 5 = 483

Worst-case complexity

W (n) =

(
n∑

i=1

fidi

)
− (n− 1)

How to prove the correctness of formula?

The tree is generated in bottom-up manner, and must be a
full binary tree. Each non-leaf node corresponds to a merge
operation, contribution to W (n) is −1.
The number of internal nodes = m. Except leaf nodes, for all
internal nodes: in-degree = 1, out-degree = 2.∑
out-degree = 2m,

∑
in-degree = n+ (m− 1)⇒ m = n− 1

31 / 88

Complexity of 2-way Merge (2/2)

Calculation from n leaf nodes
(21 + 10 + 32 + 41)× 3 + (18 + 70)× 2− 5 = 483

Worst-case complexity

W (n) =

(
n∑

i=1

fidi

)
− (n− 1)

How to prove the correctness of formula?
The tree is generated in bottom-up manner, and must be a
full binary tree. Each non-leaf node corresponds to a merge
operation, contribution to W (n) is −1.
The number of internal nodes = m. Except leaf nodes, for all
internal nodes: in-degree = 1, out-degree = 2.∑
out-degree = 2m,

∑
in-degree = n+ (m− 1)⇒ m = n− 1

31 / 88

Optimal File Merge

Goal. Find a sequence to minimize W (n)

The problem is in spirit the same of Huffman encoding
(except a fixed constant n− 1).

Solution. Treat the item numbers as frequency, apply Huffman
algorithm to generate the merging tree.

Special example. n = 2k files and each file has the same number
of items. In this case, Huffman algorithm generate a prefect binary
tree, which is same as iterated version 2-way merge sort.

This also demonstrates the optimality of MergeSort.

32 / 88

Demo of Huffman Tree Merging

Input. Γ = {21, 10, 32, 41, 18, 70}

10 18

21

70 41 32

28

49

73119

192

Cost. (10+18)× 4+21× 3+ (70+41+32)× 2− 5 = 456 < 483

33 / 88

Demo of Huffman Tree Merging

Input. Γ = {21, 10, 32, 41, 18, 70}

10 18

21

70 41 32

28

49

73119

192

Cost. (10+18)× 4+21× 3+ (70+41+32)× 2− 5 = 456 < 483

33 / 88

Demo of Huffman Tree Merging

Input. Γ = {21, 10, 32, 41, 18, 70}

10 18

21

70 41 32

28

49

73119

192

Cost. (10+18)× 4+21× 3+ (70+41+32)× 2− 5 = 456 < 483

33 / 88

Demo of Huffman Tree Merging

Input. Γ = {21, 10, 32, 41, 18, 70}

10 18

21

70 41 32

28

49

73119

192

Cost. (10+18)× 4+21× 3+ (70+41+32)× 2− 5 = 456 < 483

33 / 88

Demo of Huffman Tree Merging

Input. Γ = {21, 10, 32, 41, 18, 70}

10 18

21

70 41 32

28

49

73

119

192

Cost. (10+18)× 4+21× 3+ (70+41+32)× 2− 5 = 456 < 483

33 / 88

Demo of Huffman Tree Merging

Input. Γ = {21, 10, 32, 41, 18, 70}

10 18

21

70 41 32

28

49

73119

192

Cost. (10+18)× 4+21× 3+ (70+41+32)× 2− 5 = 456 < 483

33 / 88

Demo of Huffman Tree Merging

Input. Γ = {21, 10, 32, 41, 18, 70}

10 18

21

70 41 32

28

49

73119

192

Cost. (10+18)× 4+21× 3+ (70+41+32)× 2− 5 = 456 < 483

33 / 88

Demo of Huffman Tree Merging

Input. Γ = {21, 10, 32, 41, 18, 70}

10 18

21

70 41 32

28

49

73119

192

Cost. (10+18)× 4+21× 3+ (70+41+32)× 2− 5 = 456 < 483

33 / 88

Recap of Huffman Coding

Refine the problem as optimal prefix-free encoding

Model the encoding scheme as building an optimized full binary
tree

Optimize function: the cost of tree

Prove the greedy construction is optimal
Lemma 1: prove the optimal encoding tree must satisfy
certain local structure
Lemma 2: prove the optimality by induction on the size of Γ

Optimal for k ⇒ Optimal for k + 1
The local structure is useful for arguing optimality

34 / 88

Outline

1 Huffman Coding

2 Single Source Shortest Path Problem
Dijkstra’s Algorithm

3 Minimal Spanning Tree
Kruskal’s Algorithm
Prim’s Algorithm

35 / 88

Single Source Shortest Path (SSSP) Problem

Problem. Given a directed graph G = (V,E) with edge weight
e(i, j) ≥ 0, find the shortest path from a source node s ∈ V to all
the nodes inside G.

1 2

6 3

5 4

10

7

4

7

1

3
2

5

6

3

d(1, 2) = 5 : ⟨1→ 6→ 2⟩
d(1, 3) = 12 : ⟨1→ 6→ 2→ 3⟩
d(1, 4) = 9 : ⟨1→ 6→ 4⟩
d(1, 5) = 4 : ⟨1→ 6→ 5⟩
d(1, 6) = 3 : ⟨1→ 6⟩

36 / 88

Applications

Wide applications in the real world
Map routing.
Seam carving.
Robot navigation.
Texture mapping.
Typesetting in LaTeX.
Urban traffic planning.
Telemarketer operator scheduling.
Routing of telecommunications messages.
Network routing protocols (OSPF, BGP, RIP).
Optimal truck routing through given traffic congestion
pattern.

37 / 88

Outline

1 Huffman Coding

2 Single Source Shortest Path Problem
Dijkstra’s Algorithm

3 Minimal Spanning Tree
Kruskal’s Algorithm
Prim’s Algorithm

38 / 88

A Brief Biography of Dijkstra

Figure: Edsger Wybe Dijkstra: a Dutch computer scientist, programmer,
software engineer, science essayist.

dream to become a representative of the UN
straight A student in high school: parents and teacher
encourage him to pursue science
major in theoretical physics in university: electronic computer
appeared at that time being, and his father sent him to attend
a programming course in Cambridge university.
devote to programming: more intellectual challenge, ruthless
cause even a single bit error is not permitted

39 / 88

A Brief Biography of Dijkstra

Figure: Edsger Wybe Dijkstra: a Dutch computer scientist, programmer,
software engineer, science essayist.

dream to become a representative of the UN
straight A student in high school: parents and teacher
encourage him to pursue science
major in theoretical physics in university: electronic computer
appeared at that time being, and his father sent him to attend
a programming course in Cambridge university.
devote to programming: more intellectual challenge, ruthless
cause even a single bit error is not permitted

39 / 88

Dijkstra’s Achievements

One of the most influential figures of computing science, shape the
new discipline both as an engineer and a theorist.

In 1972, he became the first person who was neither American
nor British to win the Turing Award.

His fundamental contributions cover diverse areas of CS:
algorithm, compiler, operating system, distributed computing
(PODC), programming language, programming paradigm and
methodology, programming verification, graph theory ...
pioneer many brand new research areas (to list some standard
notions: mutex, deadlock, semaphore)

40 / 88

Dijkstra’s Achievements

One of the most influential figures of computing science, shape the
new discipline both as an engineer and a theorist.

In 1972, he became the first person who was neither American
nor British to win the Turing Award.

His fundamental contributions cover diverse areas of CS:
algorithm, compiler, operating system, distributed computing
(PODC), programming language, programming paradigm and
methodology, programming verification, graph theory ...
pioneer many brand new research areas (to list some standard
notions: mutex, deadlock, semaphore)

40 / 88

Dijkstra’s Style

Dijkstra chose no reference style to preserve his self-reliance.

His approach to teaching was unconventional
A quick and deep thinker while engaged in the act of lecturing
Never followed a textbook, with the possible exception of his
own while it was under preparation.
Assigned challenging homework problems, and would study his
students’ solutions thoroughly.
Conducted his final examinations orally, over a whole week.
Each student was examined in Dijkstra’s office or home, and
an exam lasted several hours.

He invented many computer techniques but rarely use computer.

41 / 88

Story about Dijkstra’s Algorithm

Dijkstra had to build a demo to promote ARMAC.
think over it in cafe: finding shortest path between two cities
in Netherlands could be a good problem.
design the algorithm in 20 minutes (perhaps the greatest
achievement in his career)
published 3 years later widely used today, but not
acknowledged by mathematicians at that time being.

According to later interview, this algorithm is so simple cause there
are no pen and paper in cafe: forced him to avoid complicated
design but pursue simplicity instead.

Most work of Dijkstra are simple, efficient and elegant, orig-
inated from his mother’s guidance. The scarcity of resources
often stimulates the best creativity.

42 / 88

Dijkstra’s Algorithm

Intuition. (Breadth-First Search) Explore the unknown world step
by step, the cognition on each step is correct.
Greedy approach. Maintain a set of explored nodes S for which
algorithm has determined the shortest path distance from s∗, as
well as a set of unexplored nodes U .

1 Initialize S = ∅, d(s∗, s∗) = 0, d(s∗, v) =∞; U = V

2 Repeatedly choose unexplored node u ∈ U with

min
u∈U

d(s∗, u)

add u to S
for the rest nodes v ∈ U , update d(s∗, v) = d(s∗, u) + e(u, v)
if the right part is shorter and set prev(v) = u

3 Finishes when S = V , a.k.a. U = ∅.

43 / 88

Implement Details

Data structure:
s∗: source point
S: nodes have been explored
U : nodes have not been explored
d(s∗, v): the length of current shortest path from s∗ to v. If
v ∈ S, then it is the final length of shortest path.
prev(v): preceding node of v, used to track path

Critical optimization. Priority queue ⇒ computing minu∈U d(s∗, u)

Suppose u is added to S and there is an edge (u, v) from u to
v ∈ U . Then, it suffices to update:

d(s∗, v) = min{d(s∗, v), d(s∗, u) + e(u, v)}

Thus, for each v /∈ S, d(s∗, v) can only decrease since S only
increases and includes more u’s.

44 / 88

Priority Queue

Priority queue (usually implemented via a heap). It maintains a set
of elements with associated numeric key values and supports the
following operations.

Insert. Add a new element to the set.
Decrease-key. Accommodate the decrease in key value of a
particular element.
Delete-min. Return the element with smallest key, and remove
it from the set.
Make-queue. Build a priority queue out of the given elements,
with the given key values.

45 / 88

Dijkstra’s Algorithm to SSSP

Algorithm 2: Dijkstra(G = (V,E), s∗)

1: S = ∅, d(s∗, s∗) = 0, U = V ;
2: for u ∈ U − {s∗} do d(s∗, u) =∞, prev(u) = ⊥;
3: Q← makequeue(V) //using dist-values as keys;
4: while S ̸= V do
5: u = deletemin(Q), S = S ∪ {u}, U = U − {u};
6: for all v ∈ U do //update
7: if d(s∗, v) > d(s∗, u) + e(u, v) then

d(s∗, v) = d(s∗, u) + e(u, v);
8: prev(v) = u; decreasekey(Q, v) ;
9: end

10: end

Dijkstra’s algorithm works correctly for both directed and
undirected graphs provided that there is no negative edges.

46 / 88

Dijkstra’s algorithm: Which priority queue?

Cost of priority queue operations. |V | insert, |V | delete-min,
O(|E|) decrease-key (think why)
Performance: depends heavily on priority queue implementation

Array implementation optimal for dense graphs.
Binary heap much faster for sparse graphs.
4-way heap worth the trouble in performance-critical
situations.
Fibonacci/Brodal best in theory, but not worth implementing.

Implementation insert delete-min decrease-key total cost
unordered array O(1) O(|V |) O(1) O(|V |2)

binary heap O(log |V |) O(log |V |) O(log |V |) O(|E| log |V |)
d-ary heap O(d logd |V |) O(d logd |V |) O(logd |V |) O(|E| log|E|/|V | |V |)

Fibonacci heap O(1) O(log |V |)† O(1)† O(|E|+ |V | log |V |)
Brodal queue O(1) O(log |V |) O(1) O(|E|+ |V | log |V |)

† amortized

47 / 88

Demo of Dijkstra’s Algorithm

Input. G = (V,E), s∗ = 1, V = {1, 2, 3, 4, 5, 6}

1 2

6 3

5 4

10

7

4

7

1

3
2

5

6

3

S = ∅
d(1, 1) = 0, prev(1) = ⊥
d(1, 2) =∞, prev(2) = ⊥
d(1, 3) =∞, prev(3) = ⊥
d(1, 4) =∞, prev(4) = ⊥
d(1, 5) =∞, prev(5) = ⊥
d(1, 6) =∞, prev(6) = ⊥

S = {1}
d(1, 1) = 0, prev(1) = 1

d(1, 2) = 10, prev(2) = 1

d(1, 6) = 3, prev(6) = 1

d(1, 3) =∞, prev(3) = ⊥
d(1, 4) =∞, prev(4) = ⊥
d(1, 5) =∞, prev(5) = ⊥

6

S = {1, 6}
d(1, 1) = 0, prev(1) = 1

d(1, 6) = 3, prev(6) = 1

d(1, 2) = 5, prev(2) = 6

d(1, 4) = 9, prev(4) = 6

d(1, 5) = 4, prev(5) = 6

d(1, 3) =∞, prev(3) = ⊥
5

S = {1, 6, 5}
d(1, 1) = 0, prev(1) = 1

d(1, 6) = 3, prev(6) = 1

d(1, 5) = 4, prev(5) = 6

d(1, 2) = 5, prev(2) = 6

d(1, 4) = 9, prev(4) = 6

d(1, 3) =∞, prev(3) = ⊥

2 S = {1, 6, 5, 2}
d(1, 1) = 0, prev(1) = 1

d(1, 6) = 3, prev(6) = 1

d(1, 5) = 4, prev(5) = 6

d(1, 2) = 5, prev(2) = 6

d(1, 4) = 9, prev(4) = 6

d(1, 3) = 12, prev(3) = 2
4

S = {1, 6, 5, 2, 4}
d(1, 1) = 0, prev(1) = 1

d(1, 6) = 3, prev(6) = 1

d(1, 5) = 4, prev(5) = 6

d(1, 2) = 5, prev(2) = 6

d(1, 4) = 9 prev(4) = 6

d(1, 3) = 12, prev(3) = 2

3

S = {1, 6, 5, 2, 4, 3}
d(1, 1) = 0, prev(1) = 1

d(1, 6) = 3, prev(6) = 1

d(1, 5) = 4, prev(5) = 6

d(1, 2) = 5, prev(2) = 6

d(1, 4) = 9, prev(4) = 6

d(1, 3) = 12, prev(1) = 2

48 / 88

Demo of Dijkstra’s Algorithm

Input. G = (V,E), s∗ = 1, V = {1, 2, 3, 4, 5, 6}

1 2

6 3

5 4

10

7

4

7

1

3
2

5

6

3

S = ∅
d(1, 1) = 0, prev(1) = ⊥
d(1, 2) =∞, prev(2) = ⊥
d(1, 3) =∞, prev(3) = ⊥
d(1, 4) =∞, prev(4) = ⊥
d(1, 5) =∞, prev(5) = ⊥
d(1, 6) =∞, prev(6) = ⊥

S = {1}
d(1, 1) = 0, prev(1) = 1

d(1, 2) = 10, prev(2) = 1

d(1, 6) = 3, prev(6) = 1

d(1, 3) =∞, prev(3) = ⊥
d(1, 4) =∞, prev(4) = ⊥
d(1, 5) =∞, prev(5) = ⊥

6

S = {1, 6}
d(1, 1) = 0, prev(1) = 1

d(1, 6) = 3, prev(6) = 1

d(1, 2) = 5, prev(2) = 6

d(1, 4) = 9, prev(4) = 6

d(1, 5) = 4, prev(5) = 6

d(1, 3) =∞, prev(3) = ⊥
5

S = {1, 6, 5}
d(1, 1) = 0, prev(1) = 1

d(1, 6) = 3, prev(6) = 1

d(1, 5) = 4, prev(5) = 6

d(1, 2) = 5, prev(2) = 6

d(1, 4) = 9, prev(4) = 6

d(1, 3) =∞, prev(3) = ⊥

2 S = {1, 6, 5, 2}
d(1, 1) = 0, prev(1) = 1

d(1, 6) = 3, prev(6) = 1

d(1, 5) = 4, prev(5) = 6

d(1, 2) = 5, prev(2) = 6

d(1, 4) = 9, prev(4) = 6

d(1, 3) = 12, prev(3) = 2
4

S = {1, 6, 5, 2, 4}
d(1, 1) = 0, prev(1) = 1

d(1, 6) = 3, prev(6) = 1

d(1, 5) = 4, prev(5) = 6

d(1, 2) = 5, prev(2) = 6

d(1, 4) = 9 prev(4) = 6

d(1, 3) = 12, prev(3) = 2

3

S = {1, 6, 5, 2, 4, 3}
d(1, 1) = 0, prev(1) = 1

d(1, 6) = 3, prev(6) = 1

d(1, 5) = 4, prev(5) = 6

d(1, 2) = 5, prev(2) = 6

d(1, 4) = 9, prev(4) = 6

d(1, 3) = 12, prev(1) = 2

48 / 88

Demo of Dijkstra’s Algorithm

Input. G = (V,E), s∗ = 1, V = {1, 2, 3, 4, 5, 6}

1 2

6 3

5 4

10

7

4

7

1

3
2

5

6

3

S = ∅
d(1, 1) = 0, prev(1) = ⊥
d(1, 2) =∞, prev(2) = ⊥
d(1, 3) =∞, prev(3) = ⊥
d(1, 4) =∞, prev(4) = ⊥
d(1, 5) =∞, prev(5) = ⊥
d(1, 6) =∞, prev(6) = ⊥

S = {1}
d(1, 1) = 0, prev(1) = 1

d(1, 2) = 10, prev(2) = 1

d(1, 6) = 3, prev(6) = 1

d(1, 3) =∞, prev(3) = ⊥
d(1, 4) =∞, prev(4) = ⊥
d(1, 5) =∞, prev(5) = ⊥

6

S = {1, 6}
d(1, 1) = 0, prev(1) = 1

d(1, 6) = 3, prev(6) = 1

d(1, 2) = 5, prev(2) = 6

d(1, 4) = 9, prev(4) = 6

d(1, 5) = 4, prev(5) = 6

d(1, 3) =∞, prev(3) = ⊥

5

S = {1, 6, 5}
d(1, 1) = 0, prev(1) = 1

d(1, 6) = 3, prev(6) = 1

d(1, 5) = 4, prev(5) = 6

d(1, 2) = 5, prev(2) = 6

d(1, 4) = 9, prev(4) = 6

d(1, 3) =∞, prev(3) = ⊥

2 S = {1, 6, 5, 2}
d(1, 1) = 0, prev(1) = 1

d(1, 6) = 3, prev(6) = 1

d(1, 5) = 4, prev(5) = 6

d(1, 2) = 5, prev(2) = 6

d(1, 4) = 9, prev(4) = 6

d(1, 3) = 12, prev(3) = 2
4

S = {1, 6, 5, 2, 4}
d(1, 1) = 0, prev(1) = 1

d(1, 6) = 3, prev(6) = 1

d(1, 5) = 4, prev(5) = 6

d(1, 2) = 5, prev(2) = 6

d(1, 4) = 9 prev(4) = 6

d(1, 3) = 12, prev(3) = 2

3

S = {1, 6, 5, 2, 4, 3}
d(1, 1) = 0, prev(1) = 1

d(1, 6) = 3, prev(6) = 1

d(1, 5) = 4, prev(5) = 6

d(1, 2) = 5, prev(2) = 6

d(1, 4) = 9, prev(4) = 6

d(1, 3) = 12, prev(1) = 2

48 / 88

Demo of Dijkstra’s Algorithm

Input. G = (V,E), s∗ = 1, V = {1, 2, 3, 4, 5, 6}

1 2

6 3

5 4

10

7

4

7

1

3
2

5

6

3

S = ∅
d(1, 1) = 0, prev(1) = ⊥
d(1, 2) =∞, prev(2) = ⊥
d(1, 3) =∞, prev(3) = ⊥
d(1, 4) =∞, prev(4) = ⊥
d(1, 5) =∞, prev(5) = ⊥
d(1, 6) =∞, prev(6) = ⊥

S = {1}
d(1, 1) = 0, prev(1) = 1

d(1, 2) = 10, prev(2) = 1

d(1, 6) = 3, prev(6) = 1

d(1, 3) =∞, prev(3) = ⊥
d(1, 4) =∞, prev(4) = ⊥
d(1, 5) =∞, prev(5) = ⊥

6

S = {1, 6}
d(1, 1) = 0, prev(1) = 1

d(1, 6) = 3, prev(6) = 1

d(1, 2) = 5, prev(2) = 6

d(1, 4) = 9, prev(4) = 6

d(1, 5) = 4, prev(5) = 6

d(1, 3) =∞, prev(3) = ⊥

5

S = {1, 6, 5}
d(1, 1) = 0, prev(1) = 1

d(1, 6) = 3, prev(6) = 1

d(1, 5) = 4, prev(5) = 6

d(1, 2) = 5, prev(2) = 6

d(1, 4) = 9, prev(4) = 6

d(1, 3) =∞, prev(3) = ⊥

2 S = {1, 6, 5, 2}
d(1, 1) = 0, prev(1) = 1

d(1, 6) = 3, prev(6) = 1

d(1, 5) = 4, prev(5) = 6

d(1, 2) = 5, prev(2) = 6

d(1, 4) = 9, prev(4) = 6

d(1, 3) = 12, prev(3) = 2
4

S = {1, 6, 5, 2, 4}
d(1, 1) = 0, prev(1) = 1

d(1, 6) = 3, prev(6) = 1

d(1, 5) = 4, prev(5) = 6

d(1, 2) = 5, prev(2) = 6

d(1, 4) = 9 prev(4) = 6

d(1, 3) = 12, prev(3) = 2

3

S = {1, 6, 5, 2, 4, 3}
d(1, 1) = 0, prev(1) = 1

d(1, 6) = 3, prev(6) = 1

d(1, 5) = 4, prev(5) = 6

d(1, 2) = 5, prev(2) = 6

d(1, 4) = 9, prev(4) = 6

d(1, 3) = 12, prev(1) = 2

48 / 88

Demo of Dijkstra’s Algorithm

Input. G = (V,E), s∗ = 1, V = {1, 2, 3, 4, 5, 6}

1 2

6 3

5 4

10

7

4

7

1

3
2

5

6

3

S = ∅
d(1, 1) = 0, prev(1) = ⊥
d(1, 2) =∞, prev(2) = ⊥
d(1, 3) =∞, prev(3) = ⊥
d(1, 4) =∞, prev(4) = ⊥
d(1, 5) =∞, prev(5) = ⊥
d(1, 6) =∞, prev(6) = ⊥

S = {1}
d(1, 1) = 0, prev(1) = 1

d(1, 2) = 10, prev(2) = 1

d(1, 6) = 3, prev(6) = 1

d(1, 3) =∞, prev(3) = ⊥
d(1, 4) =∞, prev(4) = ⊥
d(1, 5) =∞, prev(5) = ⊥

6

S = {1, 6}
d(1, 1) = 0, prev(1) = 1

d(1, 6) = 3, prev(6) = 1

d(1, 2) = 5, prev(2) = 6

d(1, 4) = 9, prev(4) = 6

d(1, 5) = 4, prev(5) = 6

d(1, 3) =∞, prev(3) = ⊥

5

S = {1, 6, 5}
d(1, 1) = 0, prev(1) = 1

d(1, 6) = 3, prev(6) = 1

d(1, 5) = 4, prev(5) = 6

d(1, 2) = 5, prev(2) = 6

d(1, 4) = 9, prev(4) = 6

d(1, 3) =∞, prev(3) = ⊥

2 S = {1, 6, 5, 2}
d(1, 1) = 0, prev(1) = 1

d(1, 6) = 3, prev(6) = 1

d(1, 5) = 4, prev(5) = 6

d(1, 2) = 5, prev(2) = 6

d(1, 4) = 9, prev(4) = 6

d(1, 3) = 12, prev(3) = 2

4

S = {1, 6, 5, 2, 4}
d(1, 1) = 0, prev(1) = 1

d(1, 6) = 3, prev(6) = 1

d(1, 5) = 4, prev(5) = 6

d(1, 2) = 5, prev(2) = 6

d(1, 4) = 9 prev(4) = 6

d(1, 3) = 12, prev(3) = 2

3

S = {1, 6, 5, 2, 4, 3}
d(1, 1) = 0, prev(1) = 1

d(1, 6) = 3, prev(6) = 1

d(1, 5) = 4, prev(5) = 6

d(1, 2) = 5, prev(2) = 6

d(1, 4) = 9, prev(4) = 6

d(1, 3) = 12, prev(1) = 2

48 / 88

Demo of Dijkstra’s Algorithm

Input. G = (V,E), s∗ = 1, V = {1, 2, 3, 4, 5, 6}

1 2

6 3

5 4

10

7

4

7

1

3
2

5

6

3

S = ∅
d(1, 1) = 0, prev(1) = ⊥
d(1, 2) =∞, prev(2) = ⊥
d(1, 3) =∞, prev(3) = ⊥
d(1, 4) =∞, prev(4) = ⊥
d(1, 5) =∞, prev(5) = ⊥
d(1, 6) =∞, prev(6) = ⊥

S = {1}
d(1, 1) = 0, prev(1) = 1

d(1, 2) = 10, prev(2) = 1

d(1, 6) = 3, prev(6) = 1

d(1, 3) =∞, prev(3) = ⊥
d(1, 4) =∞, prev(4) = ⊥
d(1, 5) =∞, prev(5) = ⊥

6

S = {1, 6}
d(1, 1) = 0, prev(1) = 1

d(1, 6) = 3, prev(6) = 1

d(1, 2) = 5, prev(2) = 6

d(1, 4) = 9, prev(4) = 6

d(1, 5) = 4, prev(5) = 6

d(1, 3) =∞, prev(3) = ⊥

5

S = {1, 6, 5}
d(1, 1) = 0, prev(1) = 1

d(1, 6) = 3, prev(6) = 1

d(1, 5) = 4, prev(5) = 6

d(1, 2) = 5, prev(2) = 6

d(1, 4) = 9, prev(4) = 6

d(1, 3) =∞, prev(3) = ⊥

2

S = {1, 6, 5, 2}
d(1, 1) = 0, prev(1) = 1

d(1, 6) = 3, prev(6) = 1

d(1, 5) = 4, prev(5) = 6

d(1, 2) = 5, prev(2) = 6

d(1, 4) = 9, prev(4) = 6

d(1, 3) = 12, prev(3) = 2

4

S = {1, 6, 5, 2, 4}
d(1, 1) = 0, prev(1) = 1

d(1, 6) = 3, prev(6) = 1

d(1, 5) = 4, prev(5) = 6

d(1, 2) = 5, prev(2) = 6

d(1, 4) = 9 prev(4) = 6

d(1, 3) = 12, prev(3) = 2

3

S = {1, 6, 5, 2, 4, 3}
d(1, 1) = 0, prev(1) = 1

d(1, 6) = 3, prev(6) = 1

d(1, 5) = 4, prev(5) = 6

d(1, 2) = 5, prev(2) = 6

d(1, 4) = 9, prev(4) = 6

d(1, 3) = 12, prev(1) = 2

48 / 88

Demo of Dijkstra’s Algorithm

Input. G = (V,E), s∗ = 1, V = {1, 2, 3, 4, 5, 6}

1 2

6 3

5 4

10

7

4

7

1

3
2

5

6

3

S = ∅
d(1, 1) = 0, prev(1) = ⊥
d(1, 2) =∞, prev(2) = ⊥
d(1, 3) =∞, prev(3) = ⊥
d(1, 4) =∞, prev(4) = ⊥
d(1, 5) =∞, prev(5) = ⊥
d(1, 6) =∞, prev(6) = ⊥

S = {1}
d(1, 1) = 0, prev(1) = 1

d(1, 2) = 10, prev(2) = 1

d(1, 6) = 3, prev(6) = 1

d(1, 3) =∞, prev(3) = ⊥
d(1, 4) =∞, prev(4) = ⊥
d(1, 5) =∞, prev(5) = ⊥

6

S = {1, 6}
d(1, 1) = 0, prev(1) = 1

d(1, 6) = 3, prev(6) = 1

d(1, 2) = 5, prev(2) = 6

d(1, 4) = 9, prev(4) = 6

d(1, 5) = 4, prev(5) = 6

d(1, 3) =∞, prev(3) = ⊥

5

S = {1, 6, 5}
d(1, 1) = 0, prev(1) = 1

d(1, 6) = 3, prev(6) = 1

d(1, 5) = 4, prev(5) = 6

d(1, 2) = 5, prev(2) = 6

d(1, 4) = 9, prev(4) = 6

d(1, 3) =∞, prev(3) = ⊥

2

S = {1, 6, 5, 2}
d(1, 1) = 0, prev(1) = 1

d(1, 6) = 3, prev(6) = 1

d(1, 5) = 4, prev(5) = 6

d(1, 2) = 5, prev(2) = 6

d(1, 4) = 9, prev(4) = 6

d(1, 3) = 12, prev(3) = 2

4

S = {1, 6, 5, 2, 4}
d(1, 1) = 0, prev(1) = 1

d(1, 6) = 3, prev(6) = 1

d(1, 5) = 4, prev(5) = 6

d(1, 2) = 5, prev(2) = 6

d(1, 4) = 9 prev(4) = 6

d(1, 3) = 12, prev(3) = 2

3

S = {1, 6, 5, 2, 4, 3}
d(1, 1) = 0, prev(1) = 1

d(1, 6) = 3, prev(6) = 1

d(1, 5) = 4, prev(5) = 6

d(1, 2) = 5, prev(2) = 6

d(1, 4) = 9, prev(4) = 6

d(1, 3) = 12, prev(1) = 2

48 / 88

Proof of Correctness: Dijkskra’s Algorithm (1/2)

Proposition. For each node u ∈ S, d(s∗, u) is the length of the
shortest s∗ ; u path. a.k.a. Dijkstra’s |S|-th step result is already
correct (part of final result).

Proof. By induction on |S|.
Induction basis. |S| = 1, S = {s∗}, d(s∗, s∗) = 0. Obviously holds.
Induction step. Assume Proposition is true for |S| = k ≥ 1. Prove
the proposition also holds for |S| = k + 1.

49 / 88

Proof of Correctness: Dijkskra’s Algorithm (2/2)
Let v be the next node (k + 1 step) added to S, u be its
predecessor, we have d(s∗, v) = d(s∗, u) + e(u, v).
Correctness: Consider any s∗ ; v path P , show ℓ(P) ≥ d(s∗, v).

Let (x, y) be the first edge in P that leaves S, and let P ′ be
the subpath to x, then P is already too long as soon as it
reaches y. (x may equal u; y may equal v)

ℓ(P) = ℓ(P ′) + e(x, y) + ℓ(y, v) //definition of P
≥ d(s∗, x) + e(x, y) + 0 //induction hypothesis
≥ d(s∗, y) //definition of d
≥ d(s∗, v) //cause Dijkstra chose v instead of y

s∗

x

u

y

v

P ′

50 / 88

Extensions of Dijkstra’s algorithm

Dijkstra’s algorithm and proof extend to several related problems:
Shortest paths in undirected graphs
Maximum capacity paths
Maximum reliability paths

51 / 88

Outline

1 Huffman Coding

2 Single Source Shortest Path Problem
Dijkstra’s Algorithm

3 Minimal Spanning Tree
Kruskal’s Algorithm
Prim’s Algorithm

52 / 88

Motivation of MST

Real world problem. You are asked to network a collection of
computers by linking them. Each link has a maintenance cost.

What is the cheapest possible network?

This translates into a graph problem:
nodes – computers
undirected edges – potential links
edge’s weight – maintenance cost

Optimization goal. Pick enough edges so that all the nodes are
connected and the total weight is minimal.

53 / 88

Motivation of MST

Real world problem. You are asked to network a collection of
computers by linking them. Each link has a maintenance cost.

What is the cheapest possible network?

This translates into a graph problem:
nodes – computers
undirected edges – potential links
edge’s weight – maintenance cost

Optimization goal. Pick enough edges so that all the nodes are
connected and the total weight is minimal.

53 / 88

Basic Analysis

What are the properties of these edges?

One immediate observation. Optimal set of edges cannot contain a
cycle, since removing an edge from this cycle can reduce the cost
without compromising connectivity.

Fact 1. Removing a cycle edge cannot disconnect an undirected
graph.

The solution must be connected and acyclic
undirected graphs of this kind are called trees
we call the one with minimum total weight as minimal
spanning tree.

54 / 88

Basic Analysis

What are the properties of these edges?

One immediate observation. Optimal set of edges cannot contain a
cycle, since removing an edge from this cycle can reduce the cost
without compromising connectivity.

Fact 1. Removing a cycle edge cannot disconnect an undirected
graph.

The solution must be connected and acyclic
undirected graphs of this kind are called trees
we call the one with minimum total weight as minimal
spanning tree.

54 / 88

Minimal Spanning Tree

Spanning tree. Let G = (V,E) be an undirected graph, where we

is the weight of edge e.
A connected and acyclic subgraph T = (V,E′) is called a
spanning tree of G.
The weight of the tree T is weight(T) =

∑
e∈E′ we

The minimal spanning tree is the tree that minimizes
weight(T)

The minimal spanning tree may not be unique.

55 / 88

Example of Minimal Spanning Tree

A

B

C

D

E

F

1

4
3 4

2

4

4
5

6

A

B

C

D

E

F

1

2

4

4
5

Can you spot another?

56 / 88

Properties of Trees

Definition of Tree. An undirected graph that is connected and
acyclic.

Simplicity of structure make the notion of tree extremely useful

57 / 88

Fact of Tree (relation between nodes and edges)

Fact. A tree with n nodes has n− 1 edges.

Starting from an empty graph and building the tree one edge at a
time. Initially the n nodes are disconnected from one another.

First edge: connect two nodes (n− 2 nodes are left)
Then: an edge adds in, a node is connected

Total edges: 1 + (n− 2) = n− 1

Viewing initially disconnected n nodes as n separate components
When a particular edge ⟨u, v⟩ comes up, it merges two
components that u and v previously lie in.
Adding the edge then merges these two components, reducing
the total number of connected components by 1.
Over the course of this incremental process, the number of
connected components decreases from n to 1 ⇒ n− 1 edges
must have been added along the way

58 / 88

Property 1 of Tree

Property 1. Any connected, undirected graph G = (V,E) with
|E| = |V | − 1 is a tree.

Proof idea. Using definition, just need to show G is acyclic.
Suppose it is cyclic, we can run the following iterative procedure to
make it acyclic

1 remove one edge from a cycle each time
2 terminates with some graph G′ = (V,E′), E′ ⊆ E, which is

acyclic.
Operation ⇒ G′ is still connected ⇒ G′ is a tree (by def of tree)
Fact ⇒ |E′| = |V | − 1 ⇒ E′ = E ⇒ G′ = G

No edges were removed, and G was acyclic to start with.

We can tell whether a connected graph is a tree just by
counting how many edges it has.

59 / 88

Property 1 of Tree

Property 1. Any connected, undirected graph G = (V,E) with
|E| = |V | − 1 is a tree.

Proof idea. Using definition, just need to show G is acyclic.
Suppose it is cyclic, we can run the following iterative procedure to
make it acyclic

1 remove one edge from a cycle each time
2 terminates with some graph G′ = (V,E′), E′ ⊆ E, which is

acyclic.
Operation ⇒ G′ is still connected ⇒ G′ is a tree (by def of tree)
Fact ⇒ |E′| = |V | − 1 ⇒ E′ = E ⇒ G′ = G

No edges were removed, and G was acyclic to start with.

We can tell whether a connected graph is a tree just by
counting how many edges it has.

59 / 88

Property 1 of Tree

Property 1. Any connected, undirected graph G = (V,E) with
|E| = |V | − 1 is a tree.

Proof idea. Using definition, just need to show G is acyclic.
Suppose it is cyclic, we can run the following iterative procedure to
make it acyclic

1 remove one edge from a cycle each time
2 terminates with some graph G′ = (V,E′), E′ ⊆ E, which is

acyclic.
Operation ⇒ G′ is still connected ⇒ G′ is a tree (by def of tree)
Fact ⇒ |E′| = |V | − 1 ⇒ E′ = E ⇒ G′ = G

No edges were removed, and G was acyclic to start with.

We can tell whether a connected graph is a tree just by
counting how many edges it has.

59 / 88

Property 2 of Tree (Another Characterization)

Property 2. An undirected graph G = (V,E) is a tree if and only if
there is a unique path between any pair of nodes.

Forward direction
In a tree, any two nodes can only have one path between
them; for if there were two paths, the union of these paths
would contain a cycle.

Backward direction (def: connected+acyclic ⇒ tree)
G has a path between any two nodes ⇒ G is connected
If these paths are unique, then the G is acyclic (since any pair
of nodes in a cycle have at least two paths between them).

60 / 88

Property 2 of Tree (Another Characterization)

Property 2. An undirected graph G = (V,E) is a tree if and only if
there is a unique path between any pair of nodes.

Forward direction
In a tree, any two nodes can only have one path between
them; for if there were two paths, the union of these paths
would contain a cycle.

Backward direction (def: connected+acyclic ⇒ tree)
G has a path between any two nodes ⇒ G is connected
If these paths are unique, then the G is acyclic (since any pair
of nodes in a cycle have at least two paths between them).

60 / 88

Property 2 of Tree (Another Characterization)

Property 2. An undirected graph G = (V,E) is a tree if and only if
there is a unique path between any pair of nodes.

Forward direction
In a tree, any two nodes can only have one path between
them; for if there were two paths, the union of these paths
would contain a cycle.

Backward direction (def: connected+acyclic ⇒ tree)
G has a path between any two nodes ⇒ G is connected
If these paths are unique, then the G is acyclic (since any pair
of nodes in a cycle have at least two paths between them).

60 / 88

Brief Summary

The above properties give three criteria to decide if an undirected
graph is a tree

1 Definition: connected and acyclic
2 Property 1: connected and |V | = |E|+ 1

3 Property 2: there is a unique path between any two nodes

61 / 88

Spanning Tree: Proposition 1

Proposition 1. If T is a spanning tree of G, e /∈ T , then T ∪ {e}
contains a cycle C.

62 / 88

Spanning Tree: Proposition 1

Proposition 1. If T is a spanning tree of G, e /∈ T , then T ∪ {e}
contains a cycle C.

62 / 88

Spanning Tree: Proposition 1

Proposition 1. If T is a spanning tree of G, e /∈ T , then T ∪ {e}
contains a cycle C.

62 / 88

Spanning Tree: Proposition 2

Proposition 2. Removing any edge in the cycle C (in the context
of Proposition 1), yields another spanning tree T ′ of G.

all nodes are still connected + Property 1 ⇒ Proposition 2

This proposition gives a method of creating a new spanning tree
from an existing spanning tree.

63 / 88

Spanning Tree: Proposition 2

Proposition 2. Removing any edge in the cycle C (in the context
of Proposition 1), yields another spanning tree T ′ of G.

all nodes are still connected + Property 1 ⇒ Proposition 2

This proposition gives a method of creating a new spanning tree
from an existing spanning tree.

63 / 88

Spanning Tree: Proposition 2

Proposition 2. Removing any edge in the cycle C (in the context
of Proposition 1), yields another spanning tree T ′ of G.

all nodes are still connected + Property 1 ⇒ Proposition 2

This proposition gives a method of creating a new spanning tree
from an existing spanning tree.

63 / 88

Spanning Tree: Proposition 2

Proposition 2. Removing any edge in the cycle C (in the context
of Proposition 1), yields another spanning tree T ′ of G.

all nodes are still connected + Property 1 ⇒ Proposition 2

This proposition gives a method of creating a new spanning tree
from an existing spanning tree.

63 / 88

Spanning Tree: Proposition 2

Proposition 2. Removing any edge in the cycle C (in the context
of Proposition 1), yields another spanning tree T ′ of G.

all nodes are still connected + Property 1 ⇒ Proposition 2

This proposition gives a method of creating a new spanning tree
from an existing spanning tree.

63 / 88

Applications of MST

MST is fundamental problem with diverse applications.
Dithering.
Cluster analysis.
Max bottleneck paths.
Real-time face verification.
LDPC codes for error correction.
Image registration with Renyi entropy.
Find road networks in satellite and aerial imagery.
Reducing data storage in sequencing amino acids in a protein.
Model locality of particle interactions in turbulent fluid flows.
Network design (communication, electrical, computer, road).
Approximation algorithms for NP-hard problems (e.g., TSP,
Steiner tree).

64 / 88

The Cut Property

Say that in the process of building MST, we have already chosen
some edges and are so far on the right track.

Which edge should we add next?

If there is a correct strategy, then we can solve MST iteratively.
The following lemma gives us a lot of flexibility in our choice.

A cut of V is a partition of V , say, (S, V − S). A cut is compatible
with a set of edges X if no edge in X cross between S and V −S.

Cut property. Suppose the set of edge X is part of a MST of
G = (V,E). Let (S, V − S) be any cut compatible with X, and e
be the lightest edge across the cut. Then, X ∪ {e} is part of some
MST.

cut property guarantees that it is always safe to add the
lightest edge across any cut, provided it is compatible with X.

65 / 88

The Cut Property

Say that in the process of building MST, we have already chosen
some edges and are so far on the right track.

Which edge should we add next?

If there is a correct strategy, then we can solve MST iteratively.
The following lemma gives us a lot of flexibility in our choice.

A cut of V is a partition of V , say, (S, V − S). A cut is compatible
with a set of edges X if no edge in X cross between S and V −S.

Cut property. Suppose the set of edge X is part of a MST of
G = (V,E). Let (S, V − S) be any cut compatible with X, and e
be the lightest edge across the cut. Then, X ∪ {e} is part of some
MST.

cut property guarantees that it is always safe to add the
lightest edge across any cut, provided it is compatible with X.

65 / 88

Proof of Cut Property (1/2)

Suppose the set of edges X is part of some MST T (partial
solution, on the right track).

If the new edge e also happens to be part of T , then there is
nothing to prove.
If e /∈ T , we can construct a different MST T ′ containing
X ∪ {e} by modifying T slightly, changing just one of its
edges.

1 Add e = (u, v) to T . T is connected, it already has a path
between u and v, adding e creates a cycle.

This cycle must also have some other edge e′ across the cut
(S, V − S).

2 Remove edge e′, we are left with T ′ = T ∪ {e} − {e′}:

Proposition 1 + Proposition 2 ⇒ T ′ is still a spanning tree

66 / 88

Proof of Cut Property (2/2)

S V − S

u
ve

e′

It remains to prove T ′ is also an MST.
Proof idea. compare its weight to that of T

weight(T ′) = weight(T) + w(e)− w(e′)

Both e and e′ cross between S and V − S, and e is the lightest
edge of this type.

w(e) ≤ w(e′)⇒ weight(T ′) ≤ weight(T)
T is an MST⇒ weight(T) = weight(T ′)⇒ T ′ is also an MST

67 / 88

The Cut Property at Work

A

B

C

D

E

F

1

2
32

2

1

3

1

4

A

B

C

D

E

F

edges X

A

B

C

D

E

F

MST T

A

B

C

D

E

F

the cut

A

B

C

D

E

F

MST TMST T ′

68 / 88

The Cut Property at Work

A

B

C

D

E

F

1

2
32

2

1

3

1

4

A

B

C

D

E

F

edges X

A

B

C

D

E

F

MST T

A

B

C

D

E

F

the cut

A

B

C

D

E

F

MST TMST T ′

68 / 88

The Cut Property at Work

A

B

C

D

E

F

1

2
32

2

1

3

1

4

A

B

C

D

E

F

edges X

A

B

C

D

E

F

MST T

A

B

C

D

E

F

the cut

A

B

C

D

E

F

MST T

MST T ′

68 / 88

The Cut Property at Work

A

B

C

D

E

F

1

2
32

2

1

3

1

4

A

B

C

D

E

F

edges X

A

B

C

D

E

F

MST T

A

B

C

D

E

F

the cut

A

B

C

D

E

F

MST T

MST T ′

68 / 88

General MST Algorithm Based on Cut Property

Algorithm 3: GeneralMST(G = (V,E)): output MST de-
fined by X

1: X = ∅ //edges picked so far;
2: while |X| < |V | − 1 do
3: pick a set S ⊂ V for which X has no edges across S and

V − S //find a cut compatible with X;
4: let e ∈ E be the minimal-weight edge that crosses S and

V − S;
5: X ← X ∪ {e};
6: end

Next, we describe two famous MST algorithms following this
template.

69 / 88

Outline

1 Huffman Coding

2 Single Source Shortest Path Problem
Dijkstra’s Algorithm

3 Minimal Spanning Tree
Kruskal’s Algorithm
Prim’s Algorithm

70 / 88

Kruskal’s Algorithm (edge-by-edge)

Joseph Kruskal [American Mathematical Society, 1956]

Rough idea. Start with the empty graph, then select edges from E
according to the following rule

Repeatedly add the next lightest edge that doesn’t produce a cycle

Kruskal’s algorithm constructs the tree edge-by-edge, apart from
taking care to avoid cycles, simply picks the cheapest edge at the
moment.

This is a greedy algorithm: every decision it makes is the one
with the most obvious immediate advantage.

X is initially empty, check every possible cut (S, V − S).

71 / 88

Kruskal’s Algorithm (edge-by-edge)

Joseph Kruskal [American Mathematical Society, 1956]

Rough idea. Start with the empty graph, then select edges from E
according to the following rule

Repeatedly add the next lightest edge that doesn’t produce a cycle

Kruskal’s algorithm constructs the tree edge-by-edge, apart from
taking care to avoid cycles, simply picks the cheapest edge at the
moment.

This is a greedy algorithm: every decision it makes is the one
with the most obvious immediate advantage.

X is initially empty, check every possible cut (S, V − S).

71 / 88

Kruskal’s Algorithm (edge-by-edge)

Joseph Kruskal [American Mathematical Society, 1956]

Rough idea. Start with the empty graph, then select edges from E
according to the following rule

Repeatedly add the next lightest edge that doesn’t produce a cycle

Kruskal’s algorithm constructs the tree edge-by-edge, apart from
taking care to avoid cycles, simply picks the cheapest edge at the
moment.

This is a greedy algorithm: every decision it makes is the one
with the most obvious immediate advantage.

X is initially empty, check every possible cut (S, V − S).

71 / 88

Demo of Kruskal’s Algorithm

A

B

C

D

E

F

6

5
4 1

2

4

3

5

4

4

B

C

1

D

2

4
F

3

E

4

A

4

72 / 88

Demo of Kruskal’s Algorithm

A

B

C

D

E

F

6

5
4 1

2

4

3

5

4

4
B

C

1

D

2

4
F

3

E

4

A

4

72 / 88

Demo of Kruskal’s Algorithm

A

B

C

D

E

F

6

5
4 1

2

4

3

5

4

4
B

C

1

D

2

4
F

3

E

4

A

4

72 / 88

Demo of Kruskal’s Algorithm

A

B

C

D

E

F

6

5
4 1

2

4

3

5

4

4
B

C

1

D

2

4

F

3

E

4

A

4

72 / 88

Demo of Kruskal’s Algorithm

A

B

C

D

E

F

6

5
4 1

2

4

3

5

4

4
B

C

1

D

2

4

F

3

E

4

A

4

72 / 88

Demo of Kruskal’s Algorithm

A

B

C

D

E

F

6

5
4 1

2

4

3

5

4

4
B

C

1

D

2

4

F

3

E

4

A

4

72 / 88

Demo of Kruskal’s Algorithm

A

B

C

D

E

F

6

5
4 1

2

4

3

5

4

4
B

C

1

D

2

4

F

3

E

4

A

4

72 / 88

Interpretion of Kruskal’s Algorithm from Cut Perspective

At the very beginning, view X = ∅ as n disjoint components.
At any given moment, the set of edges X it has already chosen
corresponds to:

a partial solution T ′: a collection of connected components,
each of which has a tree structure

The next edge e to be added connects two of these components,
say, T1 and T2

viewing T1 as S ⇒ (T1, V − T1) forms a cut compatible with
X

before adding e, T1 and T2 was not connected, thus no edge in
X cross T1 and T2

e is the lightest edge that does not produce a cycle, it is
certainly to be the lightest edge between T1 and V − T1

Kruskal’s algorithm implicitly searches the lightest crossed edge
among all possible compatible cuts

73 / 88

Implementation Details

Select-and-Check. At each stage, the algorithm chooses an edge to
add to its current partial solution.

To do so, it needs to test each candidate edge (u, v) to see
whether u and v lie in different components ⇒ otherwise the
edge produces a cycle

This test implicitly ensures that X is compatible with any cut
combination of the form (Ti, V − Ti)

Merge. Once an edge is chosen, the corresponding components
need to be merged.

What kind a data structure supports such operations?

74 / 88

Data Structure

Model algorithm’s state as a collection of disjoint sets, each
contains the nodes of a particular component.

Initially each node is a component by itself.
makeset(x): create a singleton set containing just x

Repeatedly test pair of nodes (endpoints of candidate edge) to see
if they belong to the same set.

find(x): to which set does x belong?

Whenever we add an edge, merging two components
union(x, y): merge the sets containing x and y

75 / 88

Pseudocode of Kruskal’s Algorithm
Algorithm 4: Kruskal(G): output MST defined by X

1: sort the edges E by weight, X = ∅ //edge set;
2: for all u ∈ V do makeset(u);
3: while |X| < |V | − 1 do
4: for all edges (u, v) ∈ E (in ascending order) do
5: E\(u, v)//always remove the edge under check;
6: if find(u) ̸= find(v) then //check if X is compatible

with the candidate cut
7: X ← X ∪ {(u, v)}, union(u, v), break;
8: end
9: end

10: end

Complexity Analysis
cost of sorting E: O(|E| log |E|)
cost of makeset(u): O(|V |)
total cost of find(x): 2|E| ·O(log |V |) (independent of while)
union: (|V | − 1) ·O(log |V |) 76 / 88

Outline

1 Huffman Coding

2 Single Source Shortest Path Problem
Dijkstra’s Algorithm

3 Minimal Spanning Tree
Kruskal’s Algorithm
Prim’s Algorithm

77 / 88

Prim’s Algorithm (node-by-node)

First discovered by Czech mathematician Vojtěch Jarník 1930,
later rediscovered and republished by Robert C. Prim in 1957, and
Edsger W. Dijkstra in 1959. Thus, known as the DJP algorithm.

Rough idea
1 Initially: X = ∅, S = {u0}, u0 could be an arbitrary node
2 Greedy choice: On each step, select the lightest edge eu,v that

connects S and V − S, where u ∈ S, v ∈ V − S. Add eu,v to
X, add v to S.

3 Continue the procedure until S = V .
Prim’s algorithm is a popular alternative to Kruskal’s algorithm,
another implementation of the General cut-based algorithm

X is initially empty, S is initially any node
X always forms a subtree, S is the vertices set of X after first
step. This choice makes (S, V − S) naturally constitutes a
compatible cut w.r.t. X.

78 / 88

Prim’s Algorithm (node-by-node)

We can equivalently think of S as growing to include v∗ /∈ S of
smallest cost.

cost(v∗) = min
u∈S

w(u, v∗)

Pictorial View of Prim’s Algorithm

S V − S

u v∗e

Figure: T = (S,X) forms a tree, and S consists of its vertices.

79 / 88

Demo of Prim’s Algorithm

A

B

C

D

E

F

6

5
4 1

2

2

3

5

4

4

A

D

4

B
2

C

1

F

3

E

4

Set S A B C D E F

A 5/A 6/A 4/A ∞/⊥ ∞/⊥
A,D 2/D 2/D ∞/⊥ 4/D

A,D,B 1/B ∞/⊥ 4/D
A,D,B,C 5/C 3/C

A,D,B,C, F 4/F

80 / 88

Demo of Prim’s Algorithm

A

B

C

D

E

F

6

5
4 1

2

2

3

5

4

4

A

D

4

B
2

C

1

F

3

E

4

Set S A B C D E F

A 5/A 6/A 4/A ∞/⊥ ∞/⊥
A,D 2/D 2/D ∞/⊥ 4/D

A,D,B 1/B ∞/⊥ 4/D
A,D,B,C 5/C 3/C

A,D,B,C, F 4/F

80 / 88

Demo of Prim’s Algorithm

A

B

C

D

E

F

6

5
4 1

2

2

3

5

4

4

A

D

4

B
2

C

1

F

3

E

4

Set S A B C D E F

A 5/A 6/A 4/A ∞/⊥ ∞/⊥
A,D 2/D 2/D ∞/⊥ 4/D

A,D,B 1/B ∞/⊥ 4/D
A,D,B,C 5/C 3/C

A,D,B,C, F 4/F

80 / 88

Demo of Prim’s Algorithm

A

B

C

D

E

F

6

5
4 1

2

2

3

5

4

4

A

D

4

B
2

C

1

F

3

E

4

Set S A B C D E F

A 5/A 6/A 4/A ∞/⊥ ∞/⊥
A,D 2/D 2/D ∞/⊥ 4/D

A,D,B 1/B ∞/⊥ 4/D
A,D,B,C 5/C 3/C

A,D,B,C, F 4/F

80 / 88

Demo of Prim’s Algorithm

A

B

C

D

E

F

6

5
4 1

2

2

3

5

4

4

A

D

4

B
2

C

1

F

3

E

4

Set S A B C D E F

A 5/A 6/A 4/A ∞/⊥ ∞/⊥
A,D 2/D 2/D ∞/⊥ 4/D

A,D,B 1/B ∞/⊥ 4/D
A,D,B,C 5/C 3/C

A,D,B,C, F 4/F

80 / 88

Demo of Prim’s Algorithm

A

B

C

D

E

F

6

5
4 1

2

2

3

5

4

4

A

D

4

B
2

C

1

F

3

E

4

Set S A B C D E F

A 5/A 6/A 4/A ∞/⊥ ∞/⊥
A,D 2/D 2/D ∞/⊥ 4/D

A,D,B 1/B ∞/⊥ 4/D
A,D,B,C 5/C 3/C

A,D,B,C, F 4/F

80 / 88

Demo of Prim’s Algorithm

A

B

C

D

E

F

6

5
4 1

2

2

3

5

4

4

A

D

4

B
2

C

1

F

3

E

4

Set S A B C D E F

A 5/A 6/A 4/A ∞/⊥ ∞/⊥
A,D 2/D 2/D ∞/⊥ 4/D

A,D,B 1/B ∞/⊥ 4/D
A,D,B,C 5/C 3/C

A,D,B,C, F 4/F

80 / 88

Key Data Structure

At every step, Prim’s algorithm has to find the lightest edge that
connects S and V − S.

How to implement this operation? What kind of data structure
could be of help?

We use priority queue.

81 / 88

Pseudocode of Prim’s Algorithm
Algorithm 5: Prim(G): output MST defined by array prev
1: for all u ∈ V do cost(u) =∞, prev(u) = ⊥;
2: pick any initial node u0: cost(u0) = 0;
3: Q = makequeue(V);
4: while Q is not empty do
5: v∗ = deletemin(Q) //current closest point in V −S to S;
6: S ← S ∪ {v∗};
7: for each v ∈ V − S do
8: if w(v∗, v) < cost(v) then
9: cost(v) = w(v∗, v), prev(v) = v∗;

10: //update cost-value after adding v∗ to S;
11: decreasekey(Q, v)

12: end
13: end
14: end

Q is a priority queue, using cost-value as keys.
82 / 88

Correctness Proof of Prim’s Algorithm: Mathematical Induction

Proposition. For any k < n, there exists a MST containing the
edges selected by Prim’s algorithm in the first k steps.

Prim’s algorithm selects one edge in each step, selects n− 1
edges in total. Thus, the proposition proves the correctness of
Prim’s algorithm.

Proof sketch. Mathematical induction on steps.
Induction basis. k = 1, there exists a MST T that contains eu,i,
where eu,i is the minimal-weight edge connected to node u.
Induction step. Assume the edges selected by the first k steps
forms a subset of some MST, so does the first k + 1 steps.

83 / 88

Induction Basis

Claim: There exists a MST T that contains the minimal-weight
edge eu,i.
Proof. Let T be a MST. If T does not contain eu,i, then
T ∪ {eu,i} must contain a cycle, and the cycle has another edge
eu,j connecting to node u. Replacing eu,j with eu,i we obtain T ∗,
T ∗ is also a spanning tree.

If eu,i < eu,j , then weight(T ∗) < weight(T). This contradicts
to the hypothesis that T is a MST.
If eu,i = eu,j , then weight(T ∗) = weight(T). Then, T ∗ is a
MST that contains eu,i.

u

i j

T

u

i j

T ∗
⇒

84 / 88

Induction Steps (1/2)

After k steps, Prim’s algorithm selects edges e1, e2, . . . , ek. The
nodes of these edges form a node set S.
Premise. ∃ MST T = (V,E) that contains (e1, . . . , ek).
Let the k + 1 step choice is ek+1 = (u, v), u ∈ S, v ∈ V − S.

S V − S

u vek+1

Case ek+1 ∈ E: the induction step of Prim’s algorithm at k + 1
step is obviously correct.

85 / 88

Induction Steps (1/2)

After k steps, Prim’s algorithm selects edges e1, e2, . . . , ek. The
nodes of these edges form a node set S.
Premise. ∃ MST T = (V,E) that contains (e1, . . . , ek).
Let the k + 1 step choice is ek+1 = (u, v), u ∈ S, v ∈ V − S.

S V − S

u vek+1

Case ek+1 ∈ E: the induction step of Prim’s algorithm at k + 1
step is obviously correct.

85 / 88

Induction Step (2/2)

Case ek+1 /∈ E: adding ek+1 to E would create a cycle between
(u, v). In this cycle, ∃ another edge e∗ connecting S and V − S.

Let T ∗ = (E − {e∗}) ∪ {ek+1}, then T ∗ is also a spanning tree of
G, which consists of e1, . . . , ek, ek+1.

If ek+1 < e∗, then weight(T ∗) < weight(T). This contradicts
to the hypothesis that T is a MST.
If ek+1 = e∗, then weight(T ∗) = weight(T). T ∗ is also a
MST, k + 1 steps outputs is still a subset of T ∗.

S V − S

u vek+1

T

e∗

T ∗

ek+1

T

e∗

T ∗

86 / 88

Induction Step (2/2)

Case ek+1 /∈ E: adding ek+1 to E would create a cycle between
(u, v). In this cycle, ∃ another edge e∗ connecting S and V − S.
Let T ∗ = (E − {e∗}) ∪ {ek+1}, then T ∗ is also a spanning tree of
G, which consists of e1, . . . , ek, ek+1.

If ek+1 < e∗, then weight(T ∗) < weight(T). This contradicts
to the hypothesis that T is a MST.
If ek+1 = e∗, then weight(T ∗) = weight(T). T ∗ is also a
MST, k + 1 steps outputs is still a subset of T ∗.

S V − S

u v

ek+1

T

e∗

T ∗

ek+1

T

e∗

T ∗

86 / 88

Kruskal’s Algorithm vs. Prim’s Algorithm

Kruskal’s algorithm
initial state: X = ∅, V (MST) = ∅
growth of MST: X always forms a subgraph of final MST
cut property: try all possible cuts compatible with X

data structure: union set

Prim’s algorithm
initial state: X = ∅, V (MST) = ∀u
growth of MST: X always forms a subtree of final MST
cut property: select a particular cut determined by X (S is
initially an arbitrary vertice, then the vertice set of X)
data structure: priority queue

87 / 88

Summary of This Lecture

Greedy algorithm. applicable to combinatorial optimization
problems: simple and efficient

build up a solution piece by piece
alway choose the next piece that offers the most obvious and
immediate benefit (rely on heuristic)

How to (dis)prove correctness of greedy algorithm?
(counter-example)

Mathematical induction (on algorithm steps or input size)
Exchange argument (gradually transform optimal solution to
algorithm solution without affect optimality)

Sometimes greedy algorithm only gives approximate algorithms
Some classical greedy algorithms: Huffman coding, SSSP, MST

88 / 88

	Content of This Lecture
	Huffman Coding
	Single Source Shortest Path Problem
	Dijkstra's Algorithm

	Minimal Spanning Tree
	Kruskal's Algorithm
	Prim's Algorithm

